Abstract
Bit-precise reasoning is important for many practical applications of Satisfiability Modulo Theories (SMT). In recent years, efficient approaches for solving fixed-size bit-vector formulas have been developed. From the theoretical point of view, only few results on the complexity of fixed-size bit-vector logics have been published. Most of these results only hold if unary encoding on the bit-width of bit-vectors is used.
In previous work [1], we showed that binary encoding adds more expressiveness to bit-vector logics, e.g. it makes fixed-size bit-vector logic without uninterpreted functions nor quantification \(\hbox{\sc NExpTime}\)-complete.
In this paper, we look at the quantifier-free case again and propose two new results. While it is enough to consider logics with bitwise operations, equality, and shift by constant to derive \(\hbox{\sc NExpTime}\)-completeness, we show that the logic becomes \(\hbox{\sc PSpace}\)-complete if, instead of shift by constant, only shift by 1 is permitted, and even \(\hbox{\sc NP}\)-complete if no shifts are allowed at all.
Supported by FWF, NFN Grant S11408-N23 (RiSE).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kovásznai, G., Fröhlich, A., Biere, A.: On the complexity of fixed-size bit-vector logics with binary encoded bit-width. In: Proc. SMT 2012, pp. 44–55 (2012)
Cyrluk, D., Möller, O., Rueß, H.: An efficient decision procedure for the theory of fixed-sized bit-vectors. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 60–71. Springer, Heidelberg (1997)
Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for bit-vector arithmetic. In: Proc. DAC 1998, pp. 522–527 (1998)
Bjørner, N., Pichora, M.C.: Deciding fixed and non-fixed size bit-vectors. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 376–392. Springer, Heidelberg (1998)
Bruttomesso, R., Sharygina, N.: A scalable decision procedure for fixed-width bit-vectors. In: Proc. ICCAD 2009, pp. 13–20. IEEE (2009)
Franzén, A.: Efficient Solving of the Satisfiability Modulo Bit-Vectors Problem and Some Extensions to SMT. PhD thesis, University of Trento (2010)
Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: Version 2.0. In: Proc. SMT 2010, Edinburgh, UK (2010)
Brummayer, R., Biere, A., Lonsing, F.: BTOR: bit-precise modelling of word-level problems for model checking. In: Proc. BPR 2008, pp. 33–38. ACM, New York (2008)
Ayari, A., Basin, D.A., Klaedtke, F.: Decision procedures for inductive boolean functions based on alternating automata. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 170–186. Springer, Heidelberg (2000)
Spielmann, A., Kuncak, V.: Synthesis for unbounded bit-vector arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 499–513. Springer, Heidelberg (2012)
Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O., Brady, B.: Deciding bit-vector arithmetic with abstraction. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 358–372. Springer, Heidelberg (2007)
Wintersteiger, C.M., Hamadi, Y., de Moura, L.M.: Efficiently solving quantified bit-vector formulas. In: Proc. FMCAD 2010, pp. 239–246. IEEE (2010)
Wintersteiger, C.M.: Termination Analysis for Bit-Vector Programs. PhD thesis, ETH Zurich, Switzerland (2011)
Cook, B., Kroening, D., Rümmer, P., Wintersteiger, C.M.: Ranking function synthesis for bit-vector relations. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 236–250. Springer, Heidelberg (2010)
Spielmann, A., Kuncak, V.: On synthesis for unbounded bit-vector arithmetic. Technical report, EPFL, Lausanne, Switzerland (February 2012)
Johannsen, P.: Reducing bitvector satisfiability problems to scale down design sizes for RTL property checking. In: Proc. HLDVT 2001, 123–128 (2001)
Johannsen, P.: Speeding Up Hardware Verification by Automated Data Path Scaling. PhD thesis, CAU Kiel, Germany (2002)
Peterson, G.L., Reif, J.H.: Multiple-person alternation. In: Proc. FOCS 1979, pp. 348–363 (1979)
Prasad, M.R., Biere, A., Gupta, A.: A survey of recent advances in SAT-based formal verification. STTT 7(2), 156–173 (2005)
Knuth, D.E.: The Art of Computer Programming, Volume 4A: Combinatorial Algorithms. Addison-Wesley (2011)
Donini, F.M., Liberatore, P., Massacci, F., Schaerf, M.: Solving QBF with SMV. In: Proc. KR 2002, pp. 578–589 (2002)
Davis, M., Matijasevich, Y., Robinson, J.: Hilbert’s tenth problem: Diophantine equations: positive aspects of a negative solution. In: Proc. Sympos. Pure Mathematics, vol. 28, pp. 323–378 (1976)
Fröhlich, A., Kovásznai, G., Biere, A.: A DPLL algorithm for solving DQBF. In: Proc. POS 2012 (2012)
Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic (System description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008)
Lonsing, F., Biere, A.: Integrating dependency schemes in search-based QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 158–171. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fröhlich, A., Kovásznai, G., Biere, A. (2013). More on the Complexity of Quantifier-Free Fixed-Size Bit-Vector Logics with Binary Encoding. In: Bulatov, A.A., Shur, A.M. (eds) Computer Science – Theory and Applications. CSR 2013. Lecture Notes in Computer Science, vol 7913. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38536-0_33
Download citation
DOI: https://doi.org/10.1007/978-3-642-38536-0_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38535-3
Online ISBN: 978-3-642-38536-0
eBook Packages: Computer ScienceComputer Science (R0)