More on the Complexity of Quantifier-Free Fixed-Size Bit-Vector Logics with Binary Encoding | SpringerLink
Skip to main content

More on the Complexity of Quantifier-Free Fixed-Size Bit-Vector Logics with Binary Encoding

  • Conference paper
Computer Science – Theory and Applications (CSR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7913))

Included in the following conference series:

Abstract

Bit-precise reasoning is important for many practical applications of Satisfiability Modulo Theories (SMT). In recent years, efficient approaches for solving fixed-size bit-vector formulas have been developed. From the theoretical point of view, only few results on the complexity of fixed-size bit-vector logics have been published. Most of these results only hold if unary encoding on the bit-width of bit-vectors is used.

In previous work [1], we showed that binary encoding adds more expressiveness to bit-vector logics, e.g. it makes fixed-size bit-vector logic without uninterpreted functions nor quantification \(\hbox{\sc NExpTime}\)-complete.

In this paper, we look at the quantifier-free case again and propose two new results. While it is enough to consider logics with bitwise operations, equality, and shift by constant to derive \(\hbox{\sc NExpTime}\)-completeness, we show that the logic becomes \(\hbox{\sc PSpace}\)-complete if, instead of shift by constant, only shift by 1 is permitted, and even \(\hbox{\sc NP}\)-complete if no shifts are allowed at all.

Supported by FWF, NFN Grant S11408-N23 (RiSE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kovásznai, G., Fröhlich, A., Biere, A.: On the complexity of fixed-size bit-vector logics with binary encoded bit-width. In: Proc. SMT 2012, pp. 44–55 (2012)

    Google Scholar 

  2. Cyrluk, D., Möller, O., Rueß, H.: An efficient decision procedure for the theory of fixed-sized bit-vectors. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 60–71. Springer, Heidelberg (1997)

    Google Scholar 

  3. Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for bit-vector arithmetic. In: Proc. DAC 1998, pp. 522–527 (1998)

    Google Scholar 

  4. Bjørner, N., Pichora, M.C.: Deciding fixed and non-fixed size bit-vectors. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 376–392. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. Bruttomesso, R., Sharygina, N.: A scalable decision procedure for fixed-width bit-vectors. In: Proc. ICCAD 2009, pp. 13–20. IEEE (2009)

    Google Scholar 

  6. Franzén, A.: Efficient Solving of the Satisfiability Modulo Bit-Vectors Problem and Some Extensions to SMT. PhD thesis, University of Trento (2010)

    Google Scholar 

  7. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: Version 2.0. In: Proc. SMT 2010, Edinburgh, UK (2010)

    Google Scholar 

  8. Brummayer, R., Biere, A., Lonsing, F.: BTOR: bit-precise modelling of word-level problems for model checking. In: Proc. BPR 2008, pp. 33–38. ACM, New York (2008)

    Google Scholar 

  9. Ayari, A., Basin, D.A., Klaedtke, F.: Decision procedures for inductive boolean functions based on alternating automata. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 170–186. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Spielmann, A., Kuncak, V.: Synthesis for unbounded bit-vector arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 499–513. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O., Brady, B.: Deciding bit-vector arithmetic with abstraction. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 358–372. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Wintersteiger, C.M., Hamadi, Y., de Moura, L.M.: Efficiently solving quantified bit-vector formulas. In: Proc. FMCAD 2010, pp. 239–246. IEEE (2010)

    Google Scholar 

  13. Wintersteiger, C.M.: Termination Analysis for Bit-Vector Programs. PhD thesis, ETH Zurich, Switzerland (2011)

    Google Scholar 

  14. Cook, B., Kroening, D., Rümmer, P., Wintersteiger, C.M.: Ranking function synthesis for bit-vector relations. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 236–250. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Spielmann, A., Kuncak, V.: On synthesis for unbounded bit-vector arithmetic. Technical report, EPFL, Lausanne, Switzerland (February 2012)

    Google Scholar 

  16. Johannsen, P.: Reducing bitvector satisfiability problems to scale down design sizes for RTL property checking. In: Proc. HLDVT 2001, 123–128 (2001)

    Google Scholar 

  17. Johannsen, P.: Speeding Up Hardware Verification by Automated Data Path Scaling. PhD thesis, CAU Kiel, Germany (2002)

    Google Scholar 

  18. Peterson, G.L., Reif, J.H.: Multiple-person alternation. In: Proc. FOCS 1979, pp. 348–363 (1979)

    Google Scholar 

  19. Prasad, M.R., Biere, A., Gupta, A.: A survey of recent advances in SAT-based formal verification. STTT 7(2), 156–173 (2005)

    Article  Google Scholar 

  20. Knuth, D.E.: The Art of Computer Programming, Volume 4A: Combinatorial Algorithms. Addison-Wesley (2011)

    Google Scholar 

  21. Donini, F.M., Liberatore, P., Massacci, F., Schaerf, M.: Solving QBF with SMV. In: Proc. KR 2002, pp. 578–589 (2002)

    Google Scholar 

  22. Davis, M., Matijasevich, Y., Robinson, J.: Hilbert’s tenth problem: Diophantine equations: positive aspects of a negative solution. In: Proc. Sympos. Pure Mathematics, vol. 28, pp. 323–378 (1976)

    Google Scholar 

  23. Fröhlich, A., Kovásznai, G., Biere, A.: A DPLL algorithm for solving DQBF. In: Proc. POS 2012 (2012)

    Google Scholar 

  24. Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic (System description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  25. Lonsing, F., Biere, A.: Integrating dependency schemes in search-based QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 158–171. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fröhlich, A., Kovásznai, G., Biere, A. (2013). More on the Complexity of Quantifier-Free Fixed-Size Bit-Vector Logics with Binary Encoding. In: Bulatov, A.A., Shur, A.M. (eds) Computer Science – Theory and Applications. CSR 2013. Lecture Notes in Computer Science, vol 7913. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38536-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38536-0_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38535-3

  • Online ISBN: 978-3-642-38536-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics