Colour Descriptors for Tracking in Spatial Augmented Reality | SpringerLink
Skip to main content

Colour Descriptors for Tracking in Spatial Augmented Reality

  • Conference paper
Computer Vision - ACCV 2012 Workshops (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7729))

Included in the following conference series:

Abstract

Augmented Reality is an emerging research field, that aims for the composition of real and virtual imagery, by means of a camera and display device. Spatial augmented reality employs data projectors to augment the real world. In this setting, traditional tracking methods fall short due to the interference caused by the projector. Recent works assume a calibration process to model the projector and assume continuity in movement of the object being tracked. In this paper we present a tracking-by-detection system that does not require such a procedure and makes use of natural features represented by SIFT descriptors. We evaluate a set of photometric invariants that have previously been shown to improve the performance of object recognition, added to the descriptor to reduce the influence of the projector. We evaluate the descriptors based on precision-recall under projector distortion and the total system based on its tracking performance. Results show tracking is significantly more precise using one of the invariants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bimber, O., Raskar, R.: Spatial augmented reality - Merging Real and Virtual Worlds. A. K. Peters, Ltd., Natick (2005)

    Google Scholar 

  2. Audet, S., Okutomi, M., Tanaka, M.: Direct image alignment of projector-camera systems with planar surfaces. In: CVPR, pp. 303–310. IEEE (2010)

    Google Scholar 

  3. Audet, S., Okutomi, M., Tanaka, M.: Augmenting moving planar surfaces robustly with video projection and direct image alignment. Virtual Reality, 1–12, 10.1007/s10055-012-0210-9

    Google Scholar 

  4. van Gemert, J.C., Burghouts, G.J., Seinstra, F., Geusebroek, J.M.: Color invariant object recognition using entropic graphs. International Journal of Imaging Systems and Technology 16, 146–153 (2006)

    Article  Google Scholar 

  5. Burghouts, G.J., Geusebroek, J.M.: Performance evaluation of local colour invariants. Computer Vision and Image Understanding 113, 48–62 (2009)

    Article  Google Scholar 

  6. Audet, S., Cooperstock, J.R.: Shadow removal in front projection environments using object tracking. In: Projector-Camera Systems, pp. 1–8 (2007)

    Google Scholar 

  7. Majumder, A., Brown, M.S.: Practical Multi-projector Display Design. A. K. Peters, Ltd., Natick (2007)

    Google Scholar 

  8. Zhang, L., Nayar, S.: Projection defocus analysis for scene capture and image display. ACM Transactions on Graphics 25, 907–915 (2006)

    Article  Google Scholar 

  9. Oyamada, Y., Saito, H.: Blind deconvolution based projector defocus removing with uncalibrated projector-camera pair. In: IEEE International Workshop on Projector-Camera Systems, PROCAMS (2009)

    Google Scholar 

  10. Grossberg, M.D., Peri, H., Nayar, S.K., Belhumeur, P.N.: Making one object look like another: Controlling appearance using a projector-camera system. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 452–459 (2004)

    Google Scholar 

  11. Johnson, T., Fuchs, H.: Real-time projector tracking on complex geometry using ordinary imagery. In: Projector-Camera Systems, p. 1 (2007)

    Google Scholar 

  12. Baker, S., Datta, A., Kanade, T.: Parameterizing homographies. Technical Report CMU-RI-TR-06-11, Robotics Institute, Pittsburgh, PA (2006)

    Google Scholar 

  13. Funt, B.V., Finlayson, G.D.: Color Constant Color Indexing. IEEE Transactions on Pattern Analysis and Machine Intelligence 17, 522–529 (1995)

    Article  Google Scholar 

  14. Geusebroek, J.M., van den Boomgaard, R., Smeulders, A.W.M., Geerts, H.: Color invariance. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 1338–1350 (2001)

    Article  Google Scholar 

  15. Geusebroek, J.-M., van den Boomgaard, R., Smeulders, A.W.M., Dev, A.: Color and Scale: The Spatial Structure of Color Images. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 331–341. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. van de Weijer, J., Schmid, C.: Coloring Local Feature Extraction. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 334–348. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision, ICCV 1999, vol. 2, pp. 1150–1157. IEEE Computer Society, Washington, DC (1999)

    Google Scholar 

  18. van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 1582–1596 (2010)

    Article  Google Scholar 

  19. Geusebroek, J.-M., Dev, A., van den Boomgaard, R., Smeulders, A.W.M., Cornelissen, F., Geerts, H.: Color Invariant Edge Detection. In: Nielsen, M., Johansen, P., Fogh Olsen, O., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 459–464. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  20. Koenderink, J.J.: The structure of images. Biological Cybernetics 50, 363–370 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 1615–1630 (2005)

    Article  Google Scholar 

  22. Hartley, A., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2006)

    Google Scholar 

  23. Zisserman, A., Torr, P.H.S.: Robust parameterization and computation of the trifocal tensor. In: BMVC, Motion and Active Vision (1996)

    Google Scholar 

  24. Torr, P.H.S., Zisserman, A.: Robust computation and parametrization of multiple view relations. In: ICCV, pp. 727–732 (1998)

    Google Scholar 

  25. Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. International Journal of Computer Vision 37, 151–172 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kooi, T., de Sorbier, F., Saito, H. (2013). Colour Descriptors for Tracking in Spatial Augmented Reality. In: Park, JI., Kim, J. (eds) Computer Vision - ACCV 2012 Workshops. ACCV 2012. Lecture Notes in Computer Science, vol 7729. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37484-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37484-5_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37483-8

  • Online ISBN: 978-3-642-37484-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics