Multi-Manifold Ranking: Using Multiple Features for Better Image Retrieval | SpringerLink
Skip to main content

Multi-Manifold Ranking: Using Multiple Features for Better Image Retrieval

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7819))

Included in the following conference series:

Abstract

Manifold Ranking (MR) is one of the most popular graph-based ranking methods and has been widely used for information retrieval. Due to its ability to capture the geometric structure of the image set, it has been successfully used for image retrieval. The existing approaches that use manifold ranking rely only on a single image manifold. However, such methods may not fully discover the geometric structure of the image set and may lead to poor precision results. Motivated by this, we propose a novel method named Multi-Manifold Ranking (MMR) which embeds multiple image manifolds each constructed using a different image feature. We propose a novel cost function that is minimized to obtain the ranking scores of the images. Our proposed multi-manifold ranking has a better ability to explore the geometric structure of image set as demonstrated by our experiments. Furthermore, to improve the efficiency of MMR, a specific graph called anchor graph is incorporated into MMR. The extensive experiments on real world image databases demonstrate that MMR outperforms existing manifold ranking based methods in terms of quality and has comparable running time to the fastest MR algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Christopher, P.R., Manning, D., Schütze, H.: An introduction to information Retrieval. Cambridge University Press (2009)

    Google Scholar 

  2. Dalal, N., Triggs, B.: Histogram of oriented gradients for human detection. In: CVPR, pp. 886–893 (2005)

    Google Scholar 

  3. Wang, M., et al.: Unified video annotation via multigraph learning. IEEE Trans. Circuits Syst. Video Techn. 19(5), 733–746 (2009)

    Article  Google Scholar 

  4. He, J., Li, M., Zhang, H., Tong, H., Zhang, C.: Manifold-ranking based image retrieval. In: ACM Multimedia, pp. 9–16 (2004)

    Google Scholar 

  5. Huang, J., Kumar, S.R., Mitra, M., Jing Zhu, W.: Spatial color indexing and applications. International Journal of Computer Vision 35(3), 245–268 (1999)

    Article  Google Scholar 

  6. Huang, Y., Liu, Q., Zhang, S., Metaxas, D.N.: Image retrieval via probabilistic hypergraph ranking. In: CVPR, pp. 3376–3383 (2010)

    Google Scholar 

  7. Liu, D., Hua, X.-S., Yang, L., Wang, M., Zhang, H.-J.: Tag ranking. In: ACM WWW, pp. 351–360 (2009)

    Google Scholar 

  8. Liu, W., He, J., Chang, S.-F.: Large graph construction for scalable semi-supervised learning. In: ICML, pp. 679–686 (2010)

    Google Scholar 

  9. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  10. Manjunath, B.S., Rainer Ohm, J., Vasudevan, V.V., Yamada, A.: Color and texture descriptors. IEEE Transactions on Circuits and Systems for Video Technology 11, 703–715 (1998)

    Article  Google Scholar 

  11. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)

    Article  Google Scholar 

  12. Swain, M.J., Ballard, D.H.: Color indexing. International Journal of Computer Vision 7(1), 11–32 (1991)

    Article  Google Scholar 

  13. Ulges, A., Worring, M., Breuel, T.M.: Learning visual contexts for image annotation from flickr groups. IEEE Transactions on Multimedia 13(2), 330–341 (2011)

    Article  Google Scholar 

  14. van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(9), 1582–1596 (2010)

    Article  Google Scholar 

  15. Wan, X., Yang, J., Xiao, J.: Manifold-ranking based topic-focused multi-document summarization. In: IJCAI, pp. 2903–2908 (2007)

    Google Scholar 

  16. Williams, C.K.I., Seeger, M.: Using the nyström method to speed up kernel machines. In: NIPS, pp. 682–688 (2000)

    Google Scholar 

  17. Wu, J., Rehg, J.M.: Centrist: A visual descriptor for scene categorization. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(8), 1489–1501 (2011)

    Article  Google Scholar 

  18. Xu, B., Bu, J., Chen, C., Cai, D., He, X., Liu, W., Luo, J.: Efficient manifold ranking for image retrieval. In: ACM SIGIR, pp. 525–534 (2011)

    Google Scholar 

  19. Yuan, X., Hua, X.-S., Wang, M., Wu, X.: Manifold-ranking based video concept detection on large database and feature pool. In: ACM Multimedia, pp. 623–626 (2006)

    Google Scholar 

  20. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global consistency. In: NIPS, pp. 592–602 (2003)

    Google Scholar 

  21. Zhou, D., Weston, J., Gretton, A., Bousquet, O., Schölkopf, B.: Ranking on data manifolds. In: NIPS (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Y., Cheema, M.A., Lin, X., Zhang, Q. (2013). Multi-Manifold Ranking: Using Multiple Features for Better Image Retrieval. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2013. Lecture Notes in Computer Science(), vol 7819. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37456-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37456-2_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37455-5

  • Online ISBN: 978-3-642-37456-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics