Top-N Recommendations by Learning User Preference Dynamics | SpringerLink
Skip to main content

Top-N Recommendations by Learning User Preference Dynamics

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7819))

Included in the following conference series:

Abstract

In a recommendation system, user preference patterns and the preference dynamic effect are observed in the user ×item rating matrix. However, their value has barely been exploited in previous research. In this paper, we formalize the preference pattern as a sparse matrix and propose a Preference Pattern Subspace to iteratively model the personal and the global preference patterns with an EM-like algorithm. Furthermore, we propose a PrepSVD-I algorithm by transforming the Top-N recommendation as a pairwise preference learning process. Experiment results show that the proposed PrepSVD-I algorithm significantly outperforms the state-of-the-art Top-N recommendation algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. Dover, New York (1972)

    MATH  Google Scholar 

  2. Anderson, C.: The Long Tail: Why the Future of Business Is Selling Less of More, vol. 33. Hyperion (2006)

    Google Scholar 

  3. Cremonesi, P., Garzotto, F., Negro, S., Papadopoulos, A.: Comparative Evaluation of Recommender System Quality. In: CHI Extended Abstracts, pp. 1927–1932 (2011)

    Google Scholar 

  4. Cremonesi, P., Koren, Y., Turrin, R.: Performance of Recommender Algorithms on Top-N Recommendation Tasks. In: Recsys, pp. 39–46. ACM (2010)

    Google Scholar 

  5. Deshpande, M., Karypis, G.: Item-based top- N recommendation algorithms. ACM TOIS 22(1), 143–177 (2004)

    Article  Google Scholar 

  6. Geng, X., Zhou, Z.-H., Smith-Miles, K.: Automatic age estimation based on facial aging patterns. IEEE TPAMI 29(12), 2234–2240 (2007)

    Article  Google Scholar 

  7. Golub, G.H., Van Loan, C.F.: Introduction to Matrix, 3rd edn., vol. 1. The Johns Hopkins University Press, Baltimore (1996)

    Google Scholar 

  8. Herbrich, R., Graepel, T., Obermayer, K.: Support Vector Learning for Ordinal Regression. In: ICANN 1999, vol. 470, pp. 97–102 (1999)

    Google Scholar 

  9. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating Collaborative Filtering Recommender Systems. ACM Transactions on Information Systems 22(1), 5–53 (2004)

    Article  Google Scholar 

  10. Karypis, G.: Evaluation of item-based top-n recommendation algorithms. In: CIKM 2001, pp. 247–254. ACM (2001)

    Google Scholar 

  11. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: SIGKDD 2008, pp. 426–434. ACM (2008)

    Google Scholar 

  12. Koren, Y.: Collaborative filtering with temporal dynamics. In: SIGKDD 2009, pp. 447–456. ACM (2009)

    Google Scholar 

  13. Ning, X., Karypis, G.: SLIM: Sparse Linear Methods for Top-N Recommender Systems. In: ICDM 2011, pp. 497 – 506 (2011)

    Google Scholar 

  14. Xiong, L., Chen, X., Huang, T.K., Schneider, J., Carbonell, J.G.: Temporal collaborative filtering with bayesian probabilistic tensor factorization. In: Proceedings of SIAM Data Mining (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ren, Y., Zhu, T., Li, G., Zhou, W. (2013). Top-N Recommendations by Learning User Preference Dynamics. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2013. Lecture Notes in Computer Science(), vol 7819. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37456-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37456-2_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37455-5

  • Online ISBN: 978-3-642-37456-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics