Crest: Cluster-based Representation Enrichment for Short Text Classification | SpringerLink
Skip to main content

Crest: Cluster-based Representation Enrichment for Short Text Classification

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7819))

Included in the following conference series:

Abstract

Text classification has gained research interests for decades. Many techniques have been developed and have demonstrated very good classification accuracies in various applications. Recently, the popularity of social platforms has changed the way we access (and contribute) information. Particularly, short messages, comments, and status updates, are now becoming a large portion of the online text data. The shortness, and more importantly, the sparsity, of the short text data call for a revisit of text classification techniques developed for well-written documents such as news articles. In this paper, we propose a cluster-based representation enrichment method, namely Crest, to deal with the shortness and sparsity of short text. More specifically, we propose to enrich a short text representation by incorporating a vector of topical relevances in addition to the commonly adopted tf-idf representation. The topics are derived from the knowledge embedded in the short text collection of interest by using hierarchical clustering algorithm with purity control. Our experiments show that the enriched representation significantly improves the accuracy of short text classification. The experiments were conducted on a benchmark dataset consisting of Web snippets using Support Vector Machines (SVM) as the classifier.

This work was partially done while the first author was visiting School of Computer Engineering, Nanyang Technological University, supported by MINDEF-NTU-DIRP/2010/03, Singapore.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bollegala, D., Matsuo, Y., Ishizuka, M.: Measuring semantic similarity between words using web search engines. In: Proceedings of the 16th International Conference on World Wide Web, New York, pp. 757–766 (2007)

    Google Scholar 

  2. Cai, L., Hofmann, T.: Text categorization by boosting automatically extracted concepts. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval, New York, pp. 182–189 (2003)

    Google Scholar 

  3. Carpineto, C., Osiński, S., Romano, G., Weiss, D.: A survey of web clustering engines. ACM Computing Surveys (CSUR) 41(3), 17:1–17:38 (2009)

    Article  Google Scholar 

  4. Chen, M., Jin, X., Shen, D.: Short text classification improved by learning multi-granularity topics. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, pp. 1776–1781 (2011)

    Google Scholar 

  5. Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using wikipedia-based explicit semantic analysis. In: Proceedings of the 20th International Joint Conference on Artifical Intelligence, San Francisco, CA, pp. 1606–1611 (2007)

    Google Scholar 

  6. Hu, J., Fang, L., Cao, Y., Zeng, H.-J., Li, H., Yang, Q., Chen, Z.: Enhancing text clustering by leveraging wikipedia semantics. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, NY, pp. 179–186 (2008)

    Google Scholar 

  7. Hu, X., Sun, N., Zhang, C., Chua, T.-S.: Exploiting internal and external semantics for the clustering of short texts using world knowledge. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, pp. 919–928 (2009)

    Google Scholar 

  8. Hu, X., Zhang, X., Lu, C., Park, E.K., Zhou, X.: Exploiting wikipedia as external knowledge for document clustering. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, pp. 389–396 (2009)

    Google Scholar 

  9. Manning, C., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  10. Phan, X.-H., Nguyen, L.-M., Horiguchi, S.: Learning to classify short and sparse text & web with hidden topics from large-scale data collections. In: Proceedings of the 17th International Conference on World Wide Web, New York, NY, pp. 91–100 (2008)

    Google Scholar 

  11. Sahami, M., Heilman, T.D.: A web-based kernel function for measuring the similarity of short text snippets. In: Proceedings of the 15th International Conference on World Wide Web, New York, NY, pp. 377–386 (2006)

    Google Scholar 

  12. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information Processing and Management 24(5), 513–523 (1988)

    Article  Google Scholar 

  13. Shen, D., Chen, Z., Yang, Q., Zeng, H., Zhang, B., Lu, Y., Ma, W.: Web-page classification through summarization. In: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 242–249 (2004)

    Google Scholar 

  14. Shen, D., Pan, R., Sun, J.-T., Pan, J.J., Wu, K., Yin, J., Yang, Q.: Query enrichment for web-query classification. ACM Transactions on Information Systems 24(3), 320–352 (2006)

    Article  Google Scholar 

  15. Sun, A.: Short text classification using very few words. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2012, New York, NY, pp. 1145–1146 (2012)

    Google Scholar 

  16. Tang, J., Wang, X., Gao, H., Hu, X., Liu, H.: Enriching short text representation in microblog for clustering. Frontiers of Computer Science in China 6(1), 88–101 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Yih, W.-T., Meek, C.: Improving similarity measures for short segments of text. In: Proceedings of the 22nd National Conference on Artificial Intelligence, pp. 1489–1494 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dai, Z., Sun, A., Liu, XY. (2013). Crest: Cluster-based Representation Enrichment for Short Text Classification. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2013. Lecture Notes in Computer Science(), vol 7819. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37456-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37456-2_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37455-5

  • Online ISBN: 978-3-642-37456-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics