Text Document Topical Recursive Clustering and Automatic Labeling of a Hierarchy of Document Clusters | SpringerLink
Skip to main content

Text Document Topical Recursive Clustering and Automatic Labeling of a Hierarchy of Document Clusters

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7819))

Included in the following conference series:

  • 10k Accesses

Abstract

The overwhelming amount of textual documents available nowadays highlights the need for information organization and discovery. Effectively organizing documents into a hierarchy of topics and subtopics makes it easier for users to browse the documents. This paper borrows community mining from social network analysis to generate a hierarchy of topically coherent document clusters. It focuses on giving the document clusters descriptive labels. We propose to use betweenness centrality measure in networks of co-occurring terms to label the clusters. We also incorporate keyphrase extraction and automatic titling in cluster labeling. The results show that the cluster labeling method utilizing KEA to extract keyphrases from the documents generates the best labels overall comparing to other methods and baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berendsen, R., Kovachev, B., Nastou, E.-P., de Rijke, M., Weerkamp, W.: Result disambiguation in web people search. In: Baeza-Yates, R., de Vries, A.P., Zaragoza, H., Cambazoglu, B.B., Murdock, V., Lempel, R., Silvestri, F. (eds.) ECIR 2012. LNCS, vol. 7224, pp. 146–157. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Chen, S.Y., Chang, C.N., Nien, Y.H., Ke, H.R.: Concept extraction and clustering for search result organization and virtual community construction. Computer Science and Information Systems 9(1), 323–355 (2012)

    Article  Google Scholar 

  3. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Physical Review E 70(6), 66111 (2004)

    Article  Google Scholar 

  4. Cui, H., Zaiane, O.R.: Hierarchical structural approach to improving the browsability of web search engine results. In: Proceedings of the12th International Workshop on Database and Expert Systems Applications, pp. 956–960. IEEE (2001)

    Google Scholar 

  5. Cutting, D.R., Karger, D.R., Pedersen, J.O., Tukey, J.W.: Scatter/gather: a cluster-based approach to browsing large document collections. In: Proceedings of the 15th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 1992, pp. 318–329. ACM, New York (1992)

    Chapter  Google Scholar 

  6. Dawid, W.: Descriptive Clustering as a Method for Exploring Text Collections. PhD thesis, Poznan University of Technology, Poznań, Poland (2006)

    Google Scholar 

  7. Dhillon, I.S.: Co-clustering documents and words using bipartite spectral graph partitioning. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 269–274. ACM (2001)

    Google Scholar 

  8. Ferragina, P., Gulli, A.: A personalized search engine based on web-snippet hierarchical clustering. Software: Practice and Experience 38(2), 189–225 (2008)

    Article  Google Scholar 

  9. Frigui, H., Nasraoui, O.: Simultaneous categorization of text documents and identification of cluster-dependent keywords. In: Proceedings of the 2002 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2002, vol. 2, pp. 1108–1113. IEEE (2002)

    Google Scholar 

  10. Jansen, B.J., Booth, D.L., Spink, A.: Determining the user intent of web search engine queries. In: Proceedings of the 16th International Conference on World Wide Web, pp. 1149–1150. ACM, New York (2007)

    Chapter  Google Scholar 

  11. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: Analysis and implementation. Pattern Analysis and Machine Intelligence 24(7), 881–892 (2002)

    Article  Google Scholar 

  12. Krishnapuram, R., Kummamuru, K.: Automatic taxonomy generation: Issues and possibilities. In: Fuzzy Sets and Systems IFSA 2003, pp. 184–184 (2003)

    Google Scholar 

  13. Kummamuru, K., Dhawale, A., Krishnapuram, R.: Fuzzy co-clustering of documents and keywords. In: The 12th IEEE International Conference on Fuzzy Systems, vol. 2, pp. 772–777. IEEE (2003)

    Google Scholar 

  14. Kummamuru, K., Lotlikar, R., Roy, S., Singal, K., Krishnapuram, R.: A hierarchical monothetic document clustering algorithm for summarization and browsing search results. In: Proceedings of the 13th International Conference on World Wide Web, pp. 658–665. ACM (2004)

    Google Scholar 

  15. Liu, Z., Huang, W., Zheng, Y., Sun, M.: Automatic keyphrase extraction via topic decomposition. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pp. 366–376. Association for Computational Linguistics (2010)

    Google Scholar 

  16. Lopez, C., Prince, V., Roche, M.: Automatic titling of electronic documents with noun phrase extraction. In: Soft Computing and Pattern Recognition (SoCPaR), pp. 168–171. IEEE (2010)

    Google Scholar 

  17. Manning, C.D., Raghavan, P., Schutze, H.: Introduction to information retrieval, vol. 1. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  18. Mei, Q., Shen, X., Zhai, C.X.: Automatic labeling of multinomial topic models. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 490–499. ACM (2007)

    Google Scholar 

  19. Popescul, A., Ungar, L.H.: Automatic labeling of document clusters. Unpublished Manuscript (2000)

    Google Scholar 

  20. Sanderson, M., Croft, B.: Deriving concept hierarchies from text. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 206–213. ACM (1999)

    Google Scholar 

  21. Scaiella, U., Ferragina, P., Marino, A., Ciaramita, M.: Topical clustering of search results. In: Proceedings of the fifth ACM International Conference on Web Search and Data Mining, pp. 223–232. ACM (2012)

    Google Scholar 

  22. Treeratpituk, P., Callan, J.: Automatically labeling hierarchical clusters. In: Proceedings of the 2006 International Conference on Digital Government Research, pp. 167–176. ACM (2006)

    Google Scholar 

  23. Wang, X., Bramer, M.: Exploring web search results clustering. In: Research and Development in Intelligent Systems XXIII, pp. 393–397 (2007)

    Google Scholar 

  24. Witten, I.H., Paynter, G.W., Frank, E., Gutwin, C., Nevill-Manning, C.G.: Kea: Practical automatic keyphrase extraction. In: Proceedings of the Fourth ACM Conference on Digital Libraries, pp. 254–255. ACM (1999)

    Google Scholar 

  25. Yip, K.Y., Cheung, D.W., Ng, M.K.: Harp: A practical projected clustering algorithm. IEEE Transactions on Knowledge and Data Engineering 16(11), 1387–1397 (2004)

    Article  Google Scholar 

  26. Zamir, O., Etzioni, O.: Grouper: a dynamic clustering interface to Web search results. In: Proceedings of the Eighth International Conference on World Wide Web, WWW 1999, pp. 1361–1374. Elsevier North-Holland, Inc., New York (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, X., Chen, J., Zaiane, O. (2013). Text Document Topical Recursive Clustering and Automatic Labeling of a Hierarchy of Document Clusters. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2013. Lecture Notes in Computer Science(), vol 7819. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37456-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37456-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37455-5

  • Online ISBN: 978-3-642-37456-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics