Large-Scale Bundle Adjustment by Parameter Vector Partition | SpringerLink
Skip to main content

Large-Scale Bundle Adjustment by Parameter Vector Partition

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7727))

Included in the following conference series:

Abstract

We propose an efficient parallel bundle adjustment (BA) algorithm to refine 3D reconstruction of the large-scale structure from motion (SfM) problem, which uses image collections from Internet. Different from the latest BA techniques that improve efficiency by optimizing the reprojection error function with Conjugate Gradient (CG) methods, we employ the parameter vector partition strategy. More specifically, we partition the whole BA parameter vector into a set of individual sub-vectors via normalized cut (Ncut). Correspondingly, the solution of the BA problem can be obtained by minimizing subproblems on these sub-vector spaces. Our approach is approximately parallel, and there is no need to solve the large-scale linear equation of the BA problem. Experiments carried out on a low-end computer with 4GB RAM demonstrate the efficiency and accuracy of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Snavely, N., Seitz, S., Szeliski, R.: Modeling the world from internet photo collections. International Journal of Computer Vision 80, 189–210 (2008)

    Article  Google Scholar 

  2. Agarwal, S., Snavely, N., Simon, I., Seitz, S., Szeliski, R.: Building rome in a day. In: IEEE 12th International Conference on Computer Vision, pp. 72–79 (2009)

    Google Scholar 

  3. Snavely, N., Seitz, S., Szeliski, R.: Skeletal graphs for efficient structure from motion. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  4. Farenzena, M., Fusiello, A., Gherardi, R.: Structure-and-motion pipeline on a hierarchical cluster tree. In: IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1489–1496 (2009)

    Google Scholar 

  5. Crandall, D., Owens, A., Snavely, N., Huttenlocher, D.: Discrete-continuous optimization for large-scale structure from motion. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3001–3008 (2011)

    Google Scholar 

  6. Triggs, B., McLauchlan, P., Hartley, R., Fitzgibbon, A.: Bundle adjustment–a modern synthesis. In: Vision Algorithms: Theory and practice, pp. 153–177 (2000)

    Google Scholar 

  7. Jeong, Y., Nister, D., Steedly, D., Szeliski, R., Kweon, I.: Pushing the envelope of modern methods for bundle adjustment. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1474–1481 (2010)

    Google Scholar 

  8. Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., Sayd, P.: Generic and real-time structure from motion using local bundle adjustment. Image and Vision Computing 27, 1178–1193 (2009)

    Article  Google Scholar 

  9. Lourakis, M., Argyros, A.: Is levenberg-marquardt the most efficient optimization algorithm for implementing bundle adjustment? In: IEEE 10th International Conference on Computer Vision, pp. 1526–1531 (2005)

    Google Scholar 

  10. Ni, K., Steedly, D., Dellaert, F.: Out-of-core bundle adjustment for large-scale 3d reconstruction. In: IEEE 11th International Conference on Computer Vision, pp. 1–8 (2007)

    Google Scholar 

  11. Jian, Y., Balcan, D., Dellaert, F.: Generalized subgraph preconditioners for large-scale bundle adjustment. In: IEEE 13th International Conference on Computer Vision, pp. 1–8 (2011)

    Google Scholar 

  12. Shum, H., Ke, Q., Zhang, Z.: Efficient bundle adjustment with virtual key frames: A hierarchical approach to multi-frame structure from motion. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. II:538–II:543 (1999)

    Google Scholar 

  13. Steedly, D., Essa, I.: Propagation of innovative information in non-linear least-squares structure from motion. In: IEEE 8th International Conference on Computer Vision, pp. 223–229 (2001)

    Google Scholar 

  14. Steedly, D., Essa, I., Dellaert, F.: Spectral partitioning for structure from motion. In: IEEE 9th International Conference on Computer Vision, pp. 996–103 (2003)

    Google Scholar 

  15. Agarwal, S., Snavely, N., Seitz, S., Szeliski, R.: Bundle adjustment in the large. In: European Conference on Computer Vision, pp. 29–42 (2010)

    Google Scholar 

  16. Byröd, M., Åström, K.: Conjugate gradient bundle adjustment. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 114–127. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Wu, C., Agarwal, S., Curless, B., Seitz, S.: Multicore bundle adjustment. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3057–3064 (2011)

    Google Scholar 

  18. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 888–905 (2000)

    Article  Google Scholar 

  19. Lourakis, M., Argyros, A.: Sba: A software package for generic sparse bundle adjustment. ACM Transactions on Mathematical Software (TOMS) 36, 1–30 (2009)

    Article  MathSciNet  Google Scholar 

  20. Nocedal, J., Wright, S.: Numerical optimization. Springer (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pang, S., Xue, J., Wang, L., Zheng, N. (2013). Large-Scale Bundle Adjustment by Parameter Vector Partition. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7727. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37447-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37447-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37446-3

  • Online ISBN: 978-3-642-37447-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics