Multiscale Convolutional Neural Networks for Vision–Based Classification of Cells | SpringerLink
Skip to main content

Multiscale Convolutional Neural Networks for Vision–Based Classification of Cells

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7725))

Included in the following conference series:

  • 4080 Accesses

Abstract

We present a Multiscale Convolutional Neural Network (MCNN) approach for vision–based classification of cells. Based on several deep Convolutional Neural Networks (CNN) acting at different resolutions, the proposed architecture avoid the classical handcrafted features extraction step, by processing features extraction and classification as a whole. The proposed approach gives better classification rates than classical state–of–the–art methods allowing a safer Computer–Aided Diagnosis of pleural cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Malek, J., Sebri, A., Mabrouk, S., Torki, K., Tourki, R.: Automated breast cancer diagnosis based on gvf-snake segmentation, wavelet features extraction and fuzzy classification. J. Signal Process. Syst. 55, 49–66 (2009)

    Article  Google Scholar 

  2. Puls, J.H., Dytch, H.E., Roman, M.R.: Automated screening for cervical cancer using image processing techniques. In: Proceedings of 1980 FPS Users Group Meeting (1980)

    Google Scholar 

  3. Churg, A., Cagle, P.T., Roggli, V.L.: Tumors of the Serosal Membrane. AFIP Atlas of Tumor Pathology – Series 4. American Registry of Pathology (2006)

    Google Scholar 

  4. Zarzycki, M., Schneider, T.E., Meyer-Ebrecht, D., Böcking, A.: Classification of cell types in feulgen stained cytologic specimens using morphologic features. In: Bildverarbeitung für die Medizin, 410–414 (2005)

    Google Scholar 

  5. Nebauer, C.: Evaluation of convolutional neural networks for visual recognition. IEEE Transactions on Neural Networks 9, 685–696 (1998)

    Article  Google Scholar 

  6. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  7. Hubel, D.H., Wiesel, T.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Physiol. 160, 106–154 (1962)

    Google Scholar 

  8. Scherer, D., Müller, A., Behnke, S.: Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010, Part III. LNCS, vol. 6354, pp. 92–101. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Meier, U., Ciresan, D.C., Gambardella, L.M., Schmidhuber, J.: Better digit recognition with a committee of simple neural nets. In: ICDAR, pp. 1250–1254. IEEE (2011)

    Google Scholar 

  10. Ueda, N.: Optimal linear combination of neural networks for improving classification performance. PAMI 22, 207–215 (2000)

    Article  Google Scholar 

  11. Rodenacker, K.: A feature set for cytometry on digitized microscopic images. Cell. Pathol. 25, 1–36 (2001)

    Google Scholar 

  12. Wolf, G., Beil, M., Guski, H.: Chromatin structure analysis based on a hierarchic texture model. Analytical and Quantitative Cytology and Histology 17, 25–34 (1995)

    Google Scholar 

  13. Julesz, B.: Textons, the elements of texture perception, and their interactions. Nature 290, 91–97 (1981)

    Article  Google Scholar 

  14. Rakotomamonjy, A., Bach, F., Canu, S., Grandvalet, Y.: SimpleMKL (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buyssens, P., Elmoataz, A., Lézoray, O. (2013). Multiscale Convolutional Neural Networks for Vision–Based Classification of Cells. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7725. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37444-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37444-9_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37443-2

  • Online ISBN: 978-3-642-37444-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics