Abstract
We present a Multiscale Convolutional Neural Network (MCNN) approach for vision–based classification of cells. Based on several deep Convolutional Neural Networks (CNN) acting at different resolutions, the proposed architecture avoid the classical handcrafted features extraction step, by processing features extraction and classification as a whole. The proposed approach gives better classification rates than classical state–of–the–art methods allowing a safer Computer–Aided Diagnosis of pleural cancer.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Malek, J., Sebri, A., Mabrouk, S., Torki, K., Tourki, R.: Automated breast cancer diagnosis based on gvf-snake segmentation, wavelet features extraction and fuzzy classification. J. Signal Process. Syst. 55, 49–66 (2009)
Puls, J.H., Dytch, H.E., Roman, M.R.: Automated screening for cervical cancer using image processing techniques. In: Proceedings of 1980 FPS Users Group Meeting (1980)
Churg, A., Cagle, P.T., Roggli, V.L.: Tumors of the Serosal Membrane. AFIP Atlas of Tumor Pathology – Series 4. American Registry of Pathology (2006)
Zarzycki, M., Schneider, T.E., Meyer-Ebrecht, D., Böcking, A.: Classification of cell types in feulgen stained cytologic specimens using morphologic features. In: Bildverarbeitung für die Medizin, 410–414 (2005)
Nebauer, C.: Evaluation of convolutional neural networks for visual recognition. IEEE Transactions on Neural Networks 9, 685–696 (1998)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of IEEE 86, 2278–2324 (1998)
Hubel, D.H., Wiesel, T.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Physiol. 160, 106–154 (1962)
Scherer, D., Müller, A., Behnke, S.: Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010, Part III. LNCS, vol. 6354, pp. 92–101. Springer, Heidelberg (2010)
Meier, U., Ciresan, D.C., Gambardella, L.M., Schmidhuber, J.: Better digit recognition with a committee of simple neural nets. In: ICDAR, pp. 1250–1254. IEEE (2011)
Ueda, N.: Optimal linear combination of neural networks for improving classification performance. PAMI 22, 207–215 (2000)
Rodenacker, K.: A feature set for cytometry on digitized microscopic images. Cell. Pathol. 25, 1–36 (2001)
Wolf, G., Beil, M., Guski, H.: Chromatin structure analysis based on a hierarchic texture model. Analytical and Quantitative Cytology and Histology 17, 25–34 (1995)
Julesz, B.: Textons, the elements of texture perception, and their interactions. Nature 290, 91–97 (1981)
Rakotomamonjy, A., Bach, F., Canu, S., Grandvalet, Y.: SimpleMKL (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Buyssens, P., Elmoataz, A., Lézoray, O. (2013). Multiscale Convolutional Neural Networks for Vision–Based Classification of Cells. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7725. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37444-9_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-37444-9_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37443-2
Online ISBN: 978-3-642-37444-9
eBook Packages: Computer ScienceComputer Science (R0)