Multi-objective AI Planning: Evaluating DaE YAHSP on a Tunable Benchmark | SpringerLink
Skip to main content

Multi-objective AI Planning: Evaluating DaE YAHSP on a Tunable Benchmark

  • Conference paper
Evolutionary Multi-Criterion Optimization (EMO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7811))

Included in the following conference series:

Abstract

All standard Artifical Intelligence (AI) planners to-date can only handle a single objective, and the only way for them to take into account multiple objectives is by aggregation of the objectives. Furthermore, and in deep contrast with the single objective case, there exists no benchmark problems on which to test the algorithms for multi-objective planning.

Divide-and-Evolve (DaE) is an evolutionary planner that won the (single-objective) deterministic temporal satisficing track in the last International Planning Competition. Even though it uses intensively the classical (and hence single-objective) planner YAHSP (Yet Another Heuristic Search Planner), it is possible to turn DaEyahsp into a multiobjective evolutionary planner.

A tunable benchmark suite for multi-objective planning is first proposed, and the performances of several variants of multi-objective DaE YAHSP are compared on different instances of this benchmark, hopefully paving the road to further multi-objective competitions in AI planning.

This work was partially funded by DESCARWIN ANR project (ANR-09-COSI-002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ghallab, M., Nau, D., Traverso, P.: Automated Planning, Theory and Practice. Morgan Kaufmann (2004)

    Google Scholar 

  2. Do, M., Kambhampati, S.: SAPA: A Multi-Objective Metric Temporal Planner. J. Artif. Intell. Res. (JAIR) 20, 155–194 (2003)

    MATH  Google Scholar 

  3. Refanidis, I., Vlahavas, I.: Multiobjective Heuristic State-Space Planning. Artificial Intelligence 145(1), 1–32 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gerevini, A., Saetti, A., Serina, I.: An Approach to Efficient Planning with Numerical Fluents and Multi-Criteria Plan Quality. Artificial Intelligence 172(8-9), 899–944 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, Y., Wah, B., Hsu, C.: Temporal Planning using Subgoal Partitioning and Resolution in SGPlan. J. of Artificial Intelligence Research 26(1), 323–369 (2006)

    Google Scholar 

  6. Edelkamp, S., Kissmann, P.: Optimal Symbolic Planning with Action Costs and Preferences. In: Proc. 21st IJCAI, pp. 1690–1695 (2009)

    Google Scholar 

  7. Schoenauer, M., Savéant, P., Vidal, V.: Divide-and-Evolve: A New Memetic Scheme for Domain-Independent Temporal Planning. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2006. LNCS, vol. 3906, pp. 247–260. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Vidal, V.: A Lookahead Strategy for Heuristic Search Planning. In: Proceedings of the 14th ICAPS, pp. 150–159. AAAI Press (2004)

    Google Scholar 

  9. Fikes, R., Nilsson, N.: STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving. Artificial Intelligence 1, 27–120 (1971)

    Article  Google Scholar 

  10. Bibai, J., Savéant, P., Schoenauer, M., Vidal, V.: An Evolutionary Metaheuristic Based on State Decomposition for Domain-Independent Satisficing Planning. In: Brafman, R., et al. (eds.) Proc. 20th ICAPS, pp. 18–25. AAAI Press (2010)

    Google Scholar 

  11. Bibai, J., Savéant, P., Schoenauer, M., Vidal, V.: On the Benefit of Sub-optimality within the Divide-and-Evolve Scheme. In: Cowling, P., Merz, P. (eds.) EvoCOP 2010. LNCS, vol. 6022, pp. 23–34. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Haslum, P., Geffner, H.: Admissible Heuristics for Optimal Planning. In: Proc. AIPS-2000, pp. 70–82 (2000)

    Google Scholar 

  13. Gerevini, A., Long, D.: Preferences and Soft Constraints in PDDL3. In: ICAPS Workshop on Planning with Preferences and Soft Constraints, pp. 46–53 (2006)

    Google Scholar 

  14. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comp. 6(2), 182–197 (2002)

    Article  Google Scholar 

  15. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization. In: Evol. Methods Design Optim. Control Applicat. Ind. Prob. (EUROGEN), pp. 95–100 (2002)

    Google Scholar 

  16. Zitzler, E., Künzli, S.: Indicator-Based Selection in Multiobjective Search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical report, ETH Zürich (2001)

    Google Scholar 

  18. Liefooghe, A., Basseur, M., Jourdan, L., Talbi, E.-G.: ParadisEO-MOEO: A Framework for Evolutionary Multi-objective Optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 386–400. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. J. Artif. Intell. Res. (JAIR) 36, 267–306 (2009)

    MATH  Google Scholar 

  20. Bibaï, J., Savéant, P., Schoenauer, M., Vidal, V.: On the Generality of Parameter Tuning in Evolutionary Planning. In: Proc. 12th GECCO, pp. 241–248. ACM (2010)

    Google Scholar 

  21. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA — A Platform and Programming Language Independent Interface for Search Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 494–508. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Khouadjia, M.R., Schoenauer, M., Vidal, V., Dréo, J., Savéant, P. (2013). Multi-objective AI Planning: Evaluating DaE YAHSP on a Tunable Benchmark. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds) Evolutionary Multi-Criterion Optimization. EMO 2013. Lecture Notes in Computer Science, vol 7811. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37140-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37140-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37139-4

  • Online ISBN: 978-3-642-37140-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics