Abstract
All standard Artifical Intelligence (AI) planners to-date can only handle a single objective, and the only way for them to take into account multiple objectives is by aggregation of the objectives. Furthermore, and in deep contrast with the single objective case, there exists no benchmark problems on which to test the algorithms for multi-objective planning.
Divide-and-Evolve (DaE) is an evolutionary planner that won the (single-objective) deterministic temporal satisficing track in the last International Planning Competition. Even though it uses intensively the classical (and hence single-objective) planner YAHSP (Yet Another Heuristic Search Planner), it is possible to turn DaEyahsp into a multiobjective evolutionary planner.
A tunable benchmark suite for multi-objective planning is first proposed, and the performances of several variants of multi-objective DaE YAHSP are compared on different instances of this benchmark, hopefully paving the road to further multi-objective competitions in AI planning.
This work was partially funded by DESCARWIN ANR project (ANR-09-COSI-002).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ghallab, M., Nau, D., Traverso, P.: Automated Planning, Theory and Practice. Morgan Kaufmann (2004)
Do, M., Kambhampati, S.: SAPA: A Multi-Objective Metric Temporal Planner. J. Artif. Intell. Res. (JAIR) 20, 155–194 (2003)
Refanidis, I., Vlahavas, I.: Multiobjective Heuristic State-Space Planning. Artificial Intelligence 145(1), 1–32 (2003)
Gerevini, A., Saetti, A., Serina, I.: An Approach to Efficient Planning with Numerical Fluents and Multi-Criteria Plan Quality. Artificial Intelligence 172(8-9), 899–944 (2008)
Chen, Y., Wah, B., Hsu, C.: Temporal Planning using Subgoal Partitioning and Resolution in SGPlan. J. of Artificial Intelligence Research 26(1), 323–369 (2006)
Edelkamp, S., Kissmann, P.: Optimal Symbolic Planning with Action Costs and Preferences. In: Proc. 21st IJCAI, pp. 1690–1695 (2009)
Schoenauer, M., Savéant, P., Vidal, V.: Divide-and-Evolve: A New Memetic Scheme for Domain-Independent Temporal Planning. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2006. LNCS, vol. 3906, pp. 247–260. Springer, Heidelberg (2006)
Vidal, V.: A Lookahead Strategy for Heuristic Search Planning. In: Proceedings of the 14th ICAPS, pp. 150–159. AAAI Press (2004)
Fikes, R., Nilsson, N.: STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving. Artificial Intelligence 1, 27–120 (1971)
Bibai, J., Savéant, P., Schoenauer, M., Vidal, V.: An Evolutionary Metaheuristic Based on State Decomposition for Domain-Independent Satisficing Planning. In: Brafman, R., et al. (eds.) Proc. 20th ICAPS, pp. 18–25. AAAI Press (2010)
Bibai, J., Savéant, P., Schoenauer, M., Vidal, V.: On the Benefit of Sub-optimality within the Divide-and-Evolve Scheme. In: Cowling, P., Merz, P. (eds.) EvoCOP 2010. LNCS, vol. 6022, pp. 23–34. Springer, Heidelberg (2010)
Haslum, P., Geffner, H.: Admissible Heuristics for Optimal Planning. In: Proc. AIPS-2000, pp. 70–82 (2000)
Gerevini, A., Long, D.: Preferences and Soft Constraints in PDDL3. In: ICAPS Workshop on Planning with Preferences and Soft Constraints, pp. 46–53 (2006)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comp. 6(2), 182–197 (2002)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization. In: Evol. Methods Design Optim. Control Applicat. Ind. Prob. (EUROGEN), pp. 95–100 (2002)
Zitzler, E., Künzli, S.: Indicator-Based Selection in Multiobjective Search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical report, ETH Zürich (2001)
Liefooghe, A., Basseur, M., Jourdan, L., Talbi, E.-G.: ParadisEO-MOEO: A Framework for Evolutionary Multi-objective Optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 386–400. Springer, Heidelberg (2007)
Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. J. Artif. Intell. Res. (JAIR) 36, 267–306 (2009)
Bibaï, J., Savéant, P., Schoenauer, M., Vidal, V.: On the Generality of Parameter Tuning in Evolutionary Planning. In: Proc. 12th GECCO, pp. 241–248. ACM (2010)
Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA — A Platform and Programming Language Independent Interface for Search Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 494–508. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Khouadjia, M.R., Schoenauer, M., Vidal, V., Dréo, J., Savéant, P. (2013). Multi-objective AI Planning: Evaluating DaE YAHSP on a Tunable Benchmark. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds) Evolutionary Multi-Criterion Optimization. EMO 2013. Lecture Notes in Computer Science, vol 7811. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37140-0_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-37140-0_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37139-4
Online ISBN: 978-3-642-37140-0
eBook Packages: Computer ScienceComputer Science (R0)