Abstract
Inferring gene networks can be defined as the process of identifying gene interactions from experimental data through computational analysis. The aim is to infer gene network from gene expression data using dynamic Bayesian network (DBN) with different scoring metric approaches. The previous method, Bayesian network has successfully identified those gene networks but there are some limitations. Hence, DBN is able to infer interactions from a data set consisting time series rather than steady-state data. This research is conducted in order to construct and implement gene network and to analyze the effect by applying a different scoring metric approach for modeling gene network. In order to achieve the goals, a discrete model of DBN is used with different scoring metric approaches which are BDe and MDL. The S. cerevisiae cell cycle pathway is used for this research. To ensure the gene networks are biologically probable, this research employs previous annotation relative to the dataset. By having all of these implementations, this research is able to identify the effect of different scoring metric approaches, identify biologically meaningful gene network within the gene expression datasets and display the results in convenient representations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Friedman, N., Murphy, K., Russell, S.: Learning the structure of dynamic probabilistic networks. In: Proc. 14th Conference on the Uncertainty in Artificial Intelligence, San Mateo, pp. 139–147 (1998)
Ong, I.M., Glasner, J.D., Page, D.: Modelling regulatory pathways in E. coli from time series expression profiles. Bioinformatics 18, S241–S248 (2002)
Kim, S., Imoto, S., Miyano, S.: Dynamic bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 104–113. Springer, Heidelberg (2003)
Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003)
Wilczynski, B., Dojer, N.: BNFinder: exact and efficient method for learning Bayesian Networks. Bioinformatics 25(2), 286–287 (2009)
Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998)
Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., Altman, R.B.: Missing value estimation methods for DNA microarrays. Bioinformatics 17(6), 520–525 (2001)
Dejori, M.: Analyzing Gene Expression Data with Bayesian Networks. Graz University of Technology, Austria (2002)
Vinh, N.X., Chetty, M., Coppel, R., Wangikar, P.P.: GlobalMIT: Learning Globally Optimal Dynamic Bayesian Network with the Mutual Information Test (MIT) Criterion. Bioinformatics 27(19), 2765–2766 (2011)
De Campos, L.M.: A Scoring Function for Learning Bayesian Networks based on Mutual Information and Conditional Independence Tests. J. Mach. Learn. Res. 7, 2149–2187 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mutalib, M.A. et al. (2013). Inferring Gene Networks from Gene Expression Data Using Dynamic Bayesian Network with Different Scoring Metric Approaches. In: Sidhu, A., Dhillon, S. (eds) Advances in Biomedical Infrastructure 2013. Studies in Computational Intelligence, vol 477. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37137-0_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-37137-0_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37136-3
Online ISBN: 978-3-642-37137-0
eBook Packages: EngineeringEngineering (R0)