Abstract
The relation between a straight line and its digitization as a digital straight line is often expressed using a notion of proximity. In this contribution, we consider the covering of the straight line by a set of balls centered on the digital straight line pixels. We prove that the optimal radius of the balls is strictly less than one, and can be expressed as a function of the slope of the straight line. This property is used to define discrete convexity in concordance with previous works on convexity.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Chassery, J.M.: Discrete convexity: Definition, parametrization, and compatibility with continuous convexity. Computer Vision, Graphics, and Image Processing 21(3), 326–344 (1983)
Coeurjolly, D., Montanvert, A., Chassery, J.M.: Géométrie discrète et images numériques. Hermès, traité IC2, série signal et image (2007)
Debled-Rennesson, I., Reveillès, J.P.: A linear algorithm for segmentation of digital curves. International Journal of Pattern Recognition and Artificial Intelligence 9(6), 635–662 (1995)
Eckhardt, U.: Digital Lines and Digital Convexity. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 209–228. Springer, Heidelberg (2002)
Kim, C.E.: Digital convexity, straightness, and convex polygons 4(6), 618–626 (1982)
Kim, C.E., Rosenfeld, A.: Digital straight lines and convexity of digital regions 4(2), 149–153 (1982)
Kim, C.E., Sklansky, J.: Digital and cellular convexity. Pattern Recognition 15(5), 359–367 (1982)
Klette, R., Rosenfeld, A.: Digital Geometry: Geometric methods for digital picture analysis. Morgan Kaufmann (2004)
Reveilles, J.P.: Géométrie discrète, calcul en nombres entiers et algorithmique. Thèse d’etat, Université Louis Pasteur, Strasbourg, France (1991)
Ronse, C.: A bibliography on digital and computational convexity (1961-1988) 11(2), 181–190 (1989)
Roussillon, T.: Algorithmes d’extraction de modèles géométriques discrets pour la représentation robuste des formes. Ph.D. thesis, Université Lumière Lyon 2 (2009)
Sklansky, J.: Recognition of convex blobs. Pattern Recognition 2(1), 3–10 (1970)
Sklansky, J.: Measuring concavity on a rectangular mosaic. IEEE Transactions on Computers (12), 1355–1364 (1972)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chassery, JM., Sivignon, I. (2013). Optimal Covering of a Straight Line Applied to Discrete Convexity. In: Gonzalez-Diaz, R., Jimenez, MJ., Medrano, B. (eds) Discrete Geometry for Computer Imagery. DGCI 2013. Lecture Notes in Computer Science, vol 7749. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37067-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-37067-0_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37066-3
Online ISBN: 978-3-642-37067-0
eBook Packages: Computer ScienceComputer Science (R0)