Abstract
This paper presents a first step towards a computer-aided design tool for the creation of game maps. The tool, named Sentient World, allows the designer to draw a rough terrain sketch, adding extra levels of detail through stochastic and gradient search. Novelty search generates a number of dissimilar artificial neural networks that are trained to approximate a designer’s sketch and provide maps of higher resolution back to the designer. As the procedurally generated maps are presented to the designer (to accept, reject, or edit) the terrain sketches are iteratively refined into complete high resolution maps which may diverge from initial designer concepts. Results obtained on a number of test maps show that novelty search is beneficial for introducing divergent content to the designer without reducing the speed of iterative map refinement.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ashlock, D., Gent, S., Bryden, K.: Embryogenesis of artificial landscapes. In: Design by Evolution. Natural Computing Series, pp. 203–221. Springer, Heidelberg (2008)
Baluja, S., Pomerleau, D., Jochem, T.: Towards automated artificial evolution for computer-generated images. Musical Networks, 341–370 (1999)
Dart, I.M., De Rossi, G., Togelius, J.: Speedrock: procedural rocks through grammars and evolution. In: Proceedings of the 2nd International Workshop on Procedural Content Generation in Games. ACM (2011)
Doran, J., Parberry, I.: Controlled procedural terrain generation using software agents. IEEE Transactions on Computational Intelligence and AI in Games 2(2), 111–119 (2010)
Fournier, A., Fussell, D., Carpenter, L.: Computer rendering of stochastic models. Communications of the ACM 25(6), 371–384 (1982)
Gain, J., Marais, P., Straßer, W.: Terrain sketching. In: Proceedings of the Interactive 3D Graphics and Games Symposium, pp. 31–38. ACM (2009)
Hoover, A.K., Szerlip, P.A., Stanley, K.O.: Interactively evolving harmonies through functional scaffolding. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 387–394. ACM (2011)
Lehman, J., Stanley, K.O.: Abandoning objectives: Evolution through the search for novelty alone. Evolutionary Computation 19(2), 189–223 (2011)
Li, Q., Wang, G., Zhou, F., Tang, X., Yang, K.: Example-Based Realistic Terrain Generation. In: Pan, Z., Cheok, D.A.D., Haller, M., Lau, R., Saito, H., Liang, R. (eds.) ICAT 2006. LNCS, vol. 4282, pp. 811–818. Springer, Heidelberg (2006)
Liapis, A., Yannakakis, G.N., Togelius, J.: Neuroevolutionary constrained optimization for content creation. In: Proceedings of the IEEE Conference on Computational Intelligence and Games, pp. 71–78 (2011)
Liapis, A., Yannakakis, G.N., Togelius, J.: Adapting models of visual aesthetics for personalized content creation. IEEE Transactions on Computational Intelligence and AI in Games 4(3), 213–228 (2012)
Machado, P., Romero, J., Santos, A., Cardoso, A., Pazos, A.: On the development of evolutionary artificial artists. Computers & Graphics 31(6), 818–826 (2007)
Machado, P., Romero, J., Manaris, B., Santos, A., Cardoso, A.: Power to the critics — A framework for the development of artificial art critics. In: Proceedings of the IJCAI Workshop on Creative Systems (2003)
Machado, P., Romero, J., Santos, M.L., Cardoso, A., Manaris, B.: Adaptive Critics for Evolutionary Artists. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 437–446. Springer, Heidelberg (2004)
Olsen, J.: Realtime procedural terrain generation: Realtime synthesis of eroded fractal terrain for use in computer games. Tech. rep., University of Southern Denmark (2004)
Ong, T.J., Saunders, R., Keyser, J., Leggett, J.J.: Terrain generation using genetic algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1463–1470. ACM (2005)
Rumelhart, D.: Backpropagation: theory, architectures, and applications. Lawrence Erlbaum (1995)
Smelik, R.M., Tutenel, T., de Kraker, K.J., Bidarra, R.: A declarative approach to procedural modeling of virtual worlds. Computers & Graphics 35(2), 352–363 (2011)
Stanley, K.O.: Exploiting regularity without development. In: Proceedings of the AAAI Fall Symposium on Developmental Systems. AAAI Press (2006)
Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evolutionary Computation 10(2), 99–127 (2002)
Takagi, H.: Interactive evolutionary computation: Fusion of the capabilities of EC optimization and human evaluation. Proceedings of the IEEE 89(9), 1275–1296 (2001) (invited paper)
Zhou, H., Sun, J., Turk, G., Rehg, J.M.: Terrain synthesis from digital elevation models. IEEE Transactions on Visualization and Computer Graphics 13(4), 834–848 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liapis, A., Yannakakis, G.N., Togelius, J. (2013). Sentient World: Human-Based Procedural Cartography. In: Machado, P., McDermott, J., Carballal, A. (eds) Evolutionary and Biologically Inspired Music, Sound, Art and Design. EvoMUSART 2013. Lecture Notes in Computer Science, vol 7834. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36955-1_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-36955-1_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36954-4
Online ISBN: 978-3-642-36955-1
eBook Packages: Computer ScienceComputer Science (R0)