Performance Modelling of Magnetohydrodynamics Codes | SpringerLink
Skip to main content

Performance Modelling of Magnetohydrodynamics Codes

  • Conference paper
Computer Performance Engineering (EPEW 2012, UKPEW 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7587))

Abstract

Performance modelling is an important tool utilised by the High Performance Computing industry to accurately predict the run-time of science applications on a variety of different architectures. Performance models aid in procurement decisions and help to highlight areas for possible code optimisations. This paper presents a performance model for a magnetohydrodynamics physics application, Lare. We demonstrate that this model is capable of accurately predicting the run-time of Lare across multiple platforms with an accuracy of 90% (for both strong and weak scaled problems). We then utilise this model to evaluate the performance of future optimisations. The model is generated using SST/macro, the machine level component of the Structural Simulation Toolkit (SST) from Sandia National Laboratories, and is validated on both a commodity cluster located at the University of Warwick and a large scale capability resource located at Lawrence Livermore National Laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5262
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 6578
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pang, B., Li Pen, U., Perrone, M.: Magnetohydrodynamics on Heterogeneous architectures: a performance comparison. CoRR abs/1004.1680 (2010)

    Google Scholar 

  2. Ryoo, S., Rodrigues, C.I., Baghsorkhi, S.S., Stone, S.S., Kirk, D.B., Hwu, W.-M.W.: Optimization principles and application performance evaluation of a multithreaded GPU using CUDA. In: Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP 2008, pp. 73–82. ACM, New York (2008)

    Chapter  Google Scholar 

  3. Griebel, M., Zaspel, P.: A multi-GPU accelerated solver for the three-dimensional two-phase incompressible Navier-Stokes equations. Computer Science - Research and Development 25, 65–73 (2010), doi:10.1007/s00450-010-0111-7

    Article  Google Scholar 

  4. Arber, T., Longbottom, A., Gerrard, C., Milne, A.: A Staggered Grid, Lagrangian-Eulerian Remap Code for 3-D MHD Simulations. Journal of Computational Physics 171 (2001)

    Google Scholar 

  5. Kerbyson, D., Hoisie, A., Wasserman, H.: Modelling the performance of large-scale systems.. IEE Proceedings – Software 150, 214 (2003)

    Article  Google Scholar 

  6. Hammond, S.D., Mudalige, G.R., Smith, J.A., Davis, J.A., Jarvis, S.A., Holt, J., Miller, I., Herdman, J.A., Vadgama, A.: To upgrade or not to upgrade? Catamount vs. Cray Linux Environment. In: 2010 IEEE International Symposium on Parallel Distributed Processing, Workshops and Phd Forum (IPDPSW), pp. 1–8 (2010)

    Google Scholar 

  7. Herdman, J.A., Gaudin, W.P., Turland, D., Hammond, S.D.: Benchmarking and Modelling of POWER-7, Westmere, BG/P, and GPUs: An Industry Case Study. ACM SIGMETRICS Performance Evaluation Review 38 (2011)

    Google Scholar 

  8. Pennycook, S.J., Hammond, S.D., Mudalige, G.R., Wright, S.A., Jarvis, S.A.: On the Acceleration of Wavefront Applications using Distributed Many-Core Architectures. The Computer Journal 55, 138–153 (2011)

    Article  Google Scholar 

  9. Mudalige, G.R., Giles, M.B., Bertolli, C., Kelly, P.H.: Predictive modeling and analysis of OP2 on distributed memory GPU clusters. In: Proceedings of the Second International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computing Systems, PMBS 2011, pp. 3–4. ACM, New York (2011)

    Chapter  Google Scholar 

  10. Giles, M.B., Mudalige, G.R., Sharif, Z., Markall, G., Kelly, P.H.: Performance analysis of the OP2 framework on many-core architectures. SIGMETRICS Perform. Eval. Rev. 38, 9–15 (2011)

    Article  Google Scholar 

  11. Alexandrov, A., Ionescu, M.F., Schauser, K.E., Scheiman, C.: LogGP: incorporating long messages into the LogP model - One step closer towards a realistic model for parallel computation. In: Proceedings of the Seventh Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA 1995, pp. 95–105. ACM, New York (1995)

    Chapter  Google Scholar 

  12. Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K.E., Santos, E., Subramonian, R., von Eicken, T.: LogP: towards a realistic model of parallel computation. In: Proceedings of the Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPOPP 1993, pp. 1–12. ACM, New York (1993)

    Chapter  Google Scholar 

  13. Mudalige, G.R., Vernon, M.K., Jarvis, S.A.: A Plug-and-Play Model for Evaluating Wavefront Computations on Parallel Architectures. In: 22nd IEEE International Parallel and Distributed Processing Symposium, IPDPS 2008 (2008)

    Google Scholar 

  14. Davis, J.A., Mudalige, G.R., Hammond, S.D., Herdman, J., Miller, I., Jarvis, S.A.: Predictive Analysis of a Hydrodynamics Application on Large-Scale CMP Clusters. In: International Supercomputing Conference (ISC 2011). Computer Science (R & D), vol. 26, pp. 175–185. Springer, Heidelberg (2011)

    Google Scholar 

  15. Sundaram-Stukel, D., Vernon, M.K.: Predictive analysis of a wavefront application using LogGP. SIGPLAN Not. 34, 141–150 (1999)

    Article  Google Scholar 

  16. Hammond, S.D., Mudalige, G.R., Smith, J.A., Jarvis, S.A., Herdman, J.A., Vadgama, A.: WARPP: A Toolkit for Simulating High Performance Parallel Scientific Codes. In: 2nd International Conference on Simulation Tools and Techniques, SIMUTools 2009 (2009)

    Google Scholar 

  17. Janssen, C.L., Adalsteinsson, H., Kenny, J.P.: Using simulation to design extremescale applications and architectures: programming model exploration. SIGMETRICS Perform. Eval. Rev. 38, 4–8 (2011)

    Article  Google Scholar 

  18. Rodrigues, A.F., Hemmert, K.S., Barrett, B.W., Kersey, C., Oldfield, R., Weston, M., Risen, R., Cook, J., Rosenfeld, P., CooperBalls, E., Jacob, B.: The structural simulation toolkit. SIGMETRICS Perform. Eval. Rev. 38, 37–42 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bird, R.F., Wright, S.A., Beckingsale, D.A., Jarvis, S.A. (2013). Performance Modelling of Magnetohydrodynamics Codes. In: Tribastone, M., Gilmore, S. (eds) Computer Performance Engineering. EPEW UKPEW 2012 2012. Lecture Notes in Computer Science, vol 7587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36781-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36781-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36780-9

  • Online ISBN: 978-3-642-36781-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics