Following Human Mobility Using Tweets | SpringerLink
Skip to main content

Following Human Mobility Using Tweets

  • Conference paper
Agents and Data Mining Interaction (ADMI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7607))

Included in the following conference series:

Abstract

The availability of location-based agent data is growing rapidly, enabling new research into the behavior patterns of such agents in space and time. Previously, such analysis was limited to either small experiments with GPS-equipped agents, or proprietary datasets of human cell phone users that cannot be disseminated across the academic community for followup studies. In this paper, we study the movement patterns of Twitter users in London, Los Angeles, and Tokyo. We cluster these agents by their movement patterns across space and time. We also show that it is possible to infer part of the underlying transportation net- work from Tweets alone, and uncover interesting differences between the behaviors exhibited by users across these three cities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5262
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 6578
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cao, L., Gorodetsky, V., Mitkas, P.: Agent mining: The synergy of agents and data mining. IEEE Intelligent Systems 24(3), 64–72 (2009)

    Article  Google Scholar 

  2. Cao, L.: Data mining and multi-agent integration. Springer, Dordrecht (2009)

    Book  MATH  Google Scholar 

  3. Noulas, A., Scellato, S., Mascolo, C., Pontil, M.: An empirical study of geographic user activity patterns in foursquare. In: Proc. of the 5th Int’l AAAI Conference on Weblogs and Social Media, pp. 570–573 (2011)

    Google Scholar 

  4. Song, C., Qu, Z., Blumm, N., Barabási, A.L.: Limits of predictability in human mobility. Science 327(5968), 1018–1021 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Azevedo, T.S., Bezerra, R.L., Campos, C.A.V., de Moraes, L.F.M.: An analysis of human mobility using real traces. In: Proceedings of the 2009 IEEE Conference on Wireless Communications & Networking Conference, WCNC 2009, pp. 2390–2395. IEEE Press, Piscataway (2009)

    Google Scholar 

  6. Candia, J., Gonzalez, M.C., Wang, P., Schoenharl, T., Madey, G., Barabasi, A.L.: Uncovering individual and collective human dynamics from mobile phone records. Math. Theor. 41, 224015 (2008)

    Article  MathSciNet  Google Scholar 

  7. Palma, A.T., Bogorny, V., Kuijpers, B., Alvares, L.O.: A clustering-based approach for discovering interesting places in trajectories. In: Proceedings of the, ACM Symposium on Applied Computing, SAC 2008, 863–868. ACM, New York (2008)

    Google Scholar 

  8. Chen, Z., Shen, H.T., Zhou, X.: Discovering popular routes from trajectories. In: Proceedings of the 2011 IEEE 27th International Conference on Data Engineering, ICDE 2011, pp. 900–911. IEEE Computer Society, Washington, DC (2011)

    Google Scholar 

  9. Masciari, E.: A Framework for Trajectory Clustering. In: Trigoni, N., Markham, A., Nawaz, S. (eds.) GSN 2009. LNCS, vol. 5659, pp. 102–111. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Vieira, M.R., Bakalov, P., Tsotras, V.J.: On-line discovery of flock patterns in spatio-temporal data. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS 2009, pp. 286–295. ACM, New York (2009)

    Google Scholar 

  11. Liao, L., Patterson, D.J., Fox, D., Kautz, H.: Learning and inferring transportation routines. Artif. Intell. 171(5-6), 311–331 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sevtsuk, A., Ratti, C.: Does urban mobility have a daily routine? learning from the aggregate data of mobile networks. Journal of Urban Technology 17(1), 41–60 (2010)

    Article  Google Scholar 

  13. Colizza, V., Barrat, A., Barthelemy, M., Valleron, A.J., Vespignani, A.: Modeling the worldwide spread of pandemic influenza: Baseline case and containment interventions. PLOS Med. 4, e13 (2007)

    Google Scholar 

  14. Li, Z., Ji, M., Lee, J.G., Tang, L.A., Yu, Y., Han, J., Kays, R.: Movemine: mining moving object databases (2010)

    Google Scholar 

  15. Andrienko, G., Andrienko, N., Wrobel, S.: Visual analytics tools for analysis of movement data. SIGKDD Explor. Newsl. 9(2), 38–46 (2007)

    Article  Google Scholar 

  16. Vasiliev, I.R.: Mapping Time. Cartographica 34(2) (1997)

    Google Scholar 

  17. Kapler, T., Wright, W.: Geo time information visualization. Information Visualization 4(2), 136–146 (2005)

    Article  Google Scholar 

  18. Gennady, A., Natalia, A.: A general framework for using aggregation in visual exploration of movement data. Cartographic Journal 47(1), 22–40 (2010)

    Google Scholar 

  19. Laube, P., Imfeld, S., Weibel, R.: Discovering relative motion patterns in groups of moving point objects. International Journal of Geographical Information Science 19, 639–668 (2005)

    Article  Google Scholar 

  20. Skupin, A., Hagelman, R.: Visualizing demographic trajectories with self-organizing maps. Geoinformatica 9(2), 159–179 (2005)

    Article  Google Scholar 

  21. Bresenham, J.E.: Algorithm for computer control of a digital plotter, pp. 1–6. ACM, New York (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Azmandian, M., Singh, K., Gelsey, B., Chang, YH., Maheswaran, R. (2013). Following Human Mobility Using Tweets. In: Cao, L., Zeng, Y., Symeonidis, A.L., Gorodetsky, V.I., Yu, P.S., Singh, M.P. (eds) Agents and Data Mining Interaction. ADMI 2012. Lecture Notes in Computer Science(), vol 7607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36288-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36288-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36287-3

  • Online ISBN: 978-3-642-36288-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics