Abstract
The availability of location-based agent data is growing rapidly, enabling new research into the behavior patterns of such agents in space and time. Previously, such analysis was limited to either small experiments with GPS-equipped agents, or proprietary datasets of human cell phone users that cannot be disseminated across the academic community for followup studies. In this paper, we study the movement patterns of Twitter users in London, Los Angeles, and Tokyo. We cluster these agents by their movement patterns across space and time. We also show that it is possible to infer part of the underlying transportation net- work from Tweets alone, and uncover interesting differences between the behaviors exhibited by users across these three cities.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cao, L., Gorodetsky, V., Mitkas, P.: Agent mining: The synergy of agents and data mining. IEEE Intelligent Systems 24(3), 64–72 (2009)
Cao, L.: Data mining and multi-agent integration. Springer, Dordrecht (2009)
Noulas, A., Scellato, S., Mascolo, C., Pontil, M.: An empirical study of geographic user activity patterns in foursquare. In: Proc. of the 5th Int’l AAAI Conference on Weblogs and Social Media, pp. 570–573 (2011)
Song, C., Qu, Z., Blumm, N., Barabási, A.L.: Limits of predictability in human mobility. Science 327(5968), 1018–1021 (2010)
Azevedo, T.S., Bezerra, R.L., Campos, C.A.V., de Moraes, L.F.M.: An analysis of human mobility using real traces. In: Proceedings of the 2009 IEEE Conference on Wireless Communications & Networking Conference, WCNC 2009, pp. 2390–2395. IEEE Press, Piscataway (2009)
Candia, J., Gonzalez, M.C., Wang, P., Schoenharl, T., Madey, G., Barabasi, A.L.: Uncovering individual and collective human dynamics from mobile phone records. Math. Theor. 41, 224015 (2008)
Palma, A.T., Bogorny, V., Kuijpers, B., Alvares, L.O.: A clustering-based approach for discovering interesting places in trajectories. In: Proceedings of the, ACM Symposium on Applied Computing, SAC 2008, 863–868. ACM, New York (2008)
Chen, Z., Shen, H.T., Zhou, X.: Discovering popular routes from trajectories. In: Proceedings of the 2011 IEEE 27th International Conference on Data Engineering, ICDE 2011, pp. 900–911. IEEE Computer Society, Washington, DC (2011)
Masciari, E.: A Framework for Trajectory Clustering. In: Trigoni, N., Markham, A., Nawaz, S. (eds.) GSN 2009. LNCS, vol. 5659, pp. 102–111. Springer, Heidelberg (2009)
Vieira, M.R., Bakalov, P., Tsotras, V.J.: On-line discovery of flock patterns in spatio-temporal data. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS 2009, pp. 286–295. ACM, New York (2009)
Liao, L., Patterson, D.J., Fox, D., Kautz, H.: Learning and inferring transportation routines. Artif. Intell. 171(5-6), 311–331 (2007)
Sevtsuk, A., Ratti, C.: Does urban mobility have a daily routine? learning from the aggregate data of mobile networks. Journal of Urban Technology 17(1), 41–60 (2010)
Colizza, V., Barrat, A., Barthelemy, M., Valleron, A.J., Vespignani, A.: Modeling the worldwide spread of pandemic influenza: Baseline case and containment interventions. PLOS Med. 4, e13 (2007)
Li, Z., Ji, M., Lee, J.G., Tang, L.A., Yu, Y., Han, J., Kays, R.: Movemine: mining moving object databases (2010)
Andrienko, G., Andrienko, N., Wrobel, S.: Visual analytics tools for analysis of movement data. SIGKDD Explor. Newsl. 9(2), 38–46 (2007)
Vasiliev, I.R.: Mapping Time. Cartographica 34(2) (1997)
Kapler, T., Wright, W.: Geo time information visualization. Information Visualization 4(2), 136–146 (2005)
Gennady, A., Natalia, A.: A general framework for using aggregation in visual exploration of movement data. Cartographic Journal 47(1), 22–40 (2010)
Laube, P., Imfeld, S., Weibel, R.: Discovering relative motion patterns in groups of moving point objects. International Journal of Geographical Information Science 19, 639–668 (2005)
Skupin, A., Hagelman, R.: Visualizing demographic trajectories with self-organizing maps. Geoinformatica 9(2), 159–179 (2005)
Bresenham, J.E.: Algorithm for computer control of a digital plotter, pp. 1–6. ACM, New York (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Azmandian, M., Singh, K., Gelsey, B., Chang, YH., Maheswaran, R. (2013). Following Human Mobility Using Tweets. In: Cao, L., Zeng, Y., Symeonidis, A.L., Gorodetsky, V.I., Yu, P.S., Singh, M.P. (eds) Agents and Data Mining Interaction. ADMI 2012. Lecture Notes in Computer Science(), vol 7607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36288-0_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-36288-0_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36287-3
Online ISBN: 978-3-642-36288-0
eBook Packages: Computer ScienceComputer Science (R0)