Abstract
We are interested in a class of numerical schemes for the optimization of nonlinear hyperbolic partial differential equations. We present continuous and discretized relaxation schemes for scalar, one– conservation laws. We present numerical results on tracking typew problems with nonsmooth desired states and convergence results for higher–order spatial and temporal discretization schemes.
Chapter PDF
Similar content being viewed by others
References
Aregba-Driollet, D., Natalini, R.: Discrete kinetic schemes for multidimensional systems of conservation laws. SIAM J. Numer. Anal. 37, 1973–2004 (2000) (electronic)
Areba-Driollet, D., Natalini, R.: Convergence of relaxation schemes for conservation laws. Applicable Analysis 61(1), 163–193 (1996)
Ascher, U., Ruuth, S., Spiteri, R.: Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Applied Numerical Mathematics 25, 151–167 (1997)
Banda, M.K., Herty, M.: Adjoint imex–based schemes for control problems governed by hyperbolic conservation laws. Computational Optimization and Applications (2010)
Banda, M.K., Seaïd, M.: Higher-order relaxation schemes for hyperbolic systems of conservation laws. J. Numer. Math. 13(3), 171–196 (2005)
Bianchini, S.: On the shift differentiability of the flow generated by a hyperbolic system of conservation laws. Discrete Contin. Dynam. Systems 6, 329–350 (2000)
Bonnans, J.F., Laurent-Varin, J.: Computation of order conditions for symplectic partitioned Runge-Kutta schemes with application to optimal control. Numerische Mathematik 103, 1–10 (2006)
Boscarino, S., Pareschi, L., Russo, G.: Implicit-Explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit (2011) (preprint)
Bressan, A., Guerra, G.: Shift-differentiability of the flow generated by a conservation law. Discrete Contin. Dynam. Systems 3, 35–58 (1997)
Bressan, A., Lewicka, M.: Shift differentials of maps in BV spaces. In: Nonlinear Theory of Generalized Functions (Vienna, 1997). Chapman & Hall/CRC Res. Notes Math., vol. 401, pp. 47–61. Chapman & Hall/CRC, Boca Raton, FL (1999)
Bressan, A., Marson, A.: A variational calculus for discontinuous solutions to conservation laws. Communications Partial Differential Equations 20, 1491–1552 (1995)
Bressan, A., Shen, W.: Optimality conditions for solutions to hyperbolic balance laws. In: Control Methods in PDE-Dynamical Systems. Contemp. Math., vol. 426, pp. 129–152 (2007)
Dimarco, G., Pareschi, L.: Asymptotic-Preserving IMEX Runge-Kutta methods for nonlinear kinetic equations (2011) (preprint)
Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)
Dontchev, A.L., Hager, W.W.: The Euler approximation in state constrained optimal control. Math. Comp. 70, 173–203 (2001)
Dontchev, A.L., Hager, W.W., Veliov, V.M.: Second–order Runge–Kutta approximations in control constrained optimal control. SIAM J. Numer. Anal. 38, 202–226 (2000)
Hager, W.W.: Runge-Kutta methods in optimal control and the transformed adjoint system. Numerische Mathematik 87, 247–282 (2000)
Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations, Part I, Nonstiff Problems, 2nd edn. Springer Series in Computational Mathematics (1993)
Herty, M., Schleper, V.: Time discretizations for numerical optimization of hyperbolic problems. Applied Mathematics and Computation (2011)
Herty, M., Pareschi, L., Steffensen, S.: Implicit–Explicit Runge-Kutta schemes for numerical discretization of optimal control problems (preprint available at University Ferrara, 2012)
Giles, M., Ulbrich, S.: Convergence of linearized and adjoint approximations for discontinuous solutions of conservation laws. Part 2: Adjoint approximations and extensions. SIAM J. Numer. Anal. 48, 905–921 (2010)
Jin, S., Xin, Z.P.: The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Comm. Pure Appl. Math. 48, 235–276 (1995)
Kennedy, C.A., Carpenter, M.H.: Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Appl. Num. Math. 44, 139–181 (2003)
Lang, J., Verwer, J.: W-Methods in optimal control, TU Darmstadt (2011) (preprint)
Natalini, R., Terracina, A.: Convergence of a relaxation approximation to a boundary value problem for conservation laws. Comm. Partial Differential Equations 26(7-8), 1235–1252 (2001)
Pareschi, L., Russo, G.: Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25, 129–155 (2005)
Pareschi, L., Russo, G.: Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations. In: Brugnano, L., Trigiante, D. (eds.) Recent Trends in Numerical Analysis, vol. 3, pp. 269–289 (2000)
Ulbrich, S.: Optimal Control of Nonlinear Hyperbolic Conservation Laws with Source Terms, Technische Universitaet Muenchen (2001)
Ulbrich, S.: On the superlinear local convergence of a filer-sqp method. Technical Report (2002)
Ulbrich, S.: Adjoint-based derivative computations for the optimal control of discontinuous solutions of hyperbolic conservation laws. Syst. Control Lett. 48, 313–328 (2003)
Walther, A.: Automatic differentiation of explicit Runge–Kutta methods for optimal control. J. Comp. Opt. Appl. 36, 83–108 (2007)
Castro, C., Palacios, F., Zuazua, E.: An alternating descent method for the optimal control of the inviscid Burgers equation in the presence of shocks. Math. Models Methods Appl. Sci. 18, 369–416 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 IFIP International Federation for Information Processing
About this paper
Cite this paper
Steffensen, S., Herty, M., Pareschi, L. (2013). Numerical Methods for the Optimal Control of Scalar Conservation Laws. In: Hömberg, D., Tröltzsch, F. (eds) System Modeling and Optimization. CSMO 2011. IFIP Advances in Information and Communication Technology, vol 391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36062-6_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-36062-6_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36061-9
Online ISBN: 978-3-642-36062-6
eBook Packages: Computer ScienceComputer Science (R0)