Abstract
At the CHES workshop last year, Ghosh et al. presented an FPGA based cryptoprocessor, which for the first time ever makes it possible to compute an eta pairing at the 128-bit security level in less than one milli-second. The high performance of their cryptoprocessor comes largely from the use of the Karatsuba method for field multiplication. In this article, for the same type of pairing we propose hybrid sequential/parallel multipliers based on the Toeplitz matrix-vector products and present some optimizations for the final exponentiation, resulting in high performance cryptoprocessors. On the same kind of FPGA devices, our cryptoprocessor performs pairing faster than that of [12] while requiring less hardware resources. We also present ASIC implementations and report that the three-way split multiplier based cryptoprocessor consumes less energy than the two-way.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Aranha, D.F., Beuchat, J.-L., Detrey, J., Estibals, N.: Optimal Eta Pairing on Supersingular Genus-2 Binary Hyperelliptic Curves. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 98–115. Springer, Heidelberg (2012)
Beuchat, J.-L., Detrey, J., Estibals, N., Okamoto, E., Rodríguez-Henríquez, F.: Fast Architectures for the η T Pairing over Small-Characteristic Supersingular Elliptic Curves. IEEE Transactions on Computers 60(2), 266–281 (2011)
Boneh, D., Franklin, M.K.: Identity-Based Encryption from the Weil Pairing. SIAM Journal on Computing 32(3), 586–615 (2003)
Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. Journal of Cryptology 17(4), 297–319 (2004)
Canright, D.: A very compact Rijndael S-box. Technical Report NPS-MA-04-001, Naval Postgraduate School (2004)
Cheung, R.C.C., Duquesne, S., Fan, J., Guillermin, N., Verbauwhede, I., Yao, G.X.: FPGA Implementation of Pairings Using Residue Number System and Lazy Reduction. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 421–441. Springer, Heidelberg (2011)
Estibals, N.: Compact Hardware for Computing the Tate Pairing over 128-Bit-Security Supersingular Curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 397–416. Springer, Heidelberg (2010)
Fan, H., Hasan, M.A.: A New Approach to Sub-quadratic Space Complexity Parallel Multipliers for Extended Binary Fields. IEEE Transactions on Computers 56(2), 224–233 (2007)
Fan, H., Sun, J., Gu, M., Lam, K.-Y.: Overlap-free Karatsuba-Ofman polynomial multiplication algorithms. Information Security, IET 4, 8–14 (2010)
Fan, J., Vercauteren, F., Verbauwhede, I.: Faster \(\mathbb{F}_p\)-Arithmetic for Cryptographic Pairings on Barreto-Naehrig Curves. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 240–253. Springer, Heidelberg (2009)
Fan, J., Vercauteren, F., Verbauwhede, I.: Efficient Hardware Implementation of \(\mathbb{F}_p\)-Arithmetic for Pairing-Friendly Curves. IEEE Transactions on Computers 61(5), 676–685 (2012)
Ghosh, S., Roychowdhury, D., Das, A.: High Speed Cryptoprocessor for η T Pairing on 128-bit Secure Supersingular Elliptic Curves over Characteristic Two Fields. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 442–458. Springer, Heidelberg (2011)
Ghosh, S., Mukhopadhyay, D., Roychowdhury, D.: High Speed Flexible Pairing Cryptoprocessor on FPGA Platform. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 450–466. Springer, Heidelberg (2010)
Itoh, T., Tsujii, S.: A Fast Algorithm for Computing Multiplicative Inverses in GF(2m) Using Normal Bases. Inf. Comput. 78(3), 171–177 (1988)
Kammler, D., Zhang, D., Schwabe, P., Scharwaechter, H., Langenberg, M., Auras, D., Ascheid, G., Mathar, R.: Designing an ASIP for Cryptographic Pairings over Barreto-Naehrig Curves. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 254–271. Springer, Heidelberg (2009)
Mastrovito, E.D.: VLSI Architectures for Computation in Galois Fields. PhD thesis, Linkoping University, Department of Electrical Engineering, Linkoping, Sweden (1991)
Barreto, P.S.L.M., Galbraith, S.D., O’Eigeartaigh, C., Scott, M.: Efficient pairing computation on supersingular Abelian varieties. Designs, Codes and Cryptography 42(3), 239–271 (2007)
Sunar, B.: A Generalized Method for Constructing Subquadratic Complexity GF(2k) Multipliers. IEEE Transactions on Computers 53, 1097–1105 (2004)
Winograd, S.: Arithmetic Complexity of Computations. Society For Industrial & Applied Mathematics, U.S. (1980)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Adikari, J., Hasan, M.A., Negre, C. (2013). Towards Faster and Greener Cryptoprocessor for Eta Pairing on Supersingular Elliptic Curve over \(\mathbb{F}_{2^{1223}}\) . In: Knudsen, L.R., Wu, H. (eds) Selected Areas in Cryptography. SAC 2012. Lecture Notes in Computer Science, vol 7707. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35999-6_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-35999-6_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35998-9
Online ISBN: 978-3-642-35999-6
eBook Packages: Computer ScienceComputer Science (R0)