Abstract
Self-similarity properties of fractal structures, including the logarithmic spiral, are related to quantum dissipative dynamics, generalized squeezed coherent states and noncommutative geometry in the plane. The rôle played by the fractal Hamiltonian which actually turns out to be the fractal free energy is discussed. Time evolution characterized by the breakdown of time-reversal symmetry is controlled by the entropy. Coherent boson condensation induced by the generators of the coherent states is shown to control the formation of fractals. Vice-versa, coherent generalized states are recognized to possess self-similar fractal structure. The global nature of fractals appears to emerge from irreversible coherent local deformation processes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Vitiello, G.: Fractals and the Fock-Bargmann Representation of Coherent States. In: Bruza, P., Sofge, D., Lawless, W., van Rijsbergen, K., Klusch, M., et al. (eds.) QI 2009. LNCS, vol. 5494, pp. 6–16. Springer, Heidelberg (2009)
Vitiello, G.: Coherent states, fractals and brain waves. New Mathematics and Natural Computation 5, 245–264 (2009); Vitiello, G.: Topological defects, fractals and the structure of quantum field theory. In: Licata, I., Sakaji, A.J. (eds.) Vision of Oneness, pp. 155–180. Aracne Edizioni, Roma (2011)
Perelomov, A.: Generalized Coherent States and Their Applications. Springer, Heidelberg (1986)
Peitgen, H.O., Jürgens, H., Saupe, D.: Chaos and Fractals. New Frontiers of Science. Springer, Heidelberg (1986)
Fodor, J., Piattelli-Palmarini, M.: What Darwin got wrong. Farrar Straus and Giroux, New York (2010)
Piattelli-Palmarini, M., Uriagereka, J.: Still a bridge too far? Biolinguistic questions for grounding language on brains. Physics of Life Reviews 5, 207–224 (2008)
Bunde, A., Havlin, S. (eds.): Fractals in Science. Springer, Heidelberg (1995)
Bak, P., Creutz, M.: Fractals and self-organized criticality. In: Bunde, A., Havlin, S. (eds.) Fractals in Science, pp. 1–25. Springer, Heidelberg (1995)
Vitiello, G.: Fractals, coherent states and self-similarity induced noncommutative geometry. Phys. Lett. A 376, 2527–2532 (2012)
Celeghini, E., Rasetti, M., Vitiello, G.: Quantum dissipation. Annals Phys. 215, 156–170 (1992)
Blasone, M., Srivastava, Y.N., Vitiello, G., Widom, A.: Phase coherence and quantum Brownian motion. Annals Phys. 267, 61–74 (1998); Graziano, E., Pashaev, O.K., Vitiello, G.: Dissipation and topologically massive gauge theories in pseudoeuclidean plane. Annals Phys. 252, 115–132 (1996)
Srivastava, Y.N., Vitiello, G., Widom, A.: Quantum dissipation and quantum noise. Annals Phys. 238, 200–207 (1995)
Vitiello, G.: Links. Relating different physical systems through the common QFT algebraic structure. In: Unruh, W.G., Schuetzhold, R. (eds.) Quantum Analogues: From Phase Transitions to Black Holes and Cosmology. Lectures Notes in Physics, vol. 718, pp. 165–205. Springer, Heidelberg (2007); hep-th/0610094
Blasone, M., Jizba, P., Vitiello, G.: Quantum Field Theory and its macroscopic manifestations. Imperial College Press, London (2011)
Schwinger, J.: Brownian Motion of a Quantum Oscillator. J. Math. Phys. 2, 407–433 (1961)
’t Hooft, G.: Quantum Gravity as a Dissipative Deterministic System. Class. Quant. Grav. 16, 3263–3279 (1999); ’t Hooft, G.: In: Basics and Highlights of Fundamental Physics. Erice (1999) [arXiv:hep-th/0003005] ’t Hooft, G.: A mathematical theory for deterministic quantum mechanics. J. Phys.: Conf. Series 67, 012015 (2007)
Blasone, M., Jizba, P., Vitiello, G.: Dissipation and quantization. Phys. Lett. A 287, 205–210 (2001); Blasone, M., Celeghini, E., Jizba, P., Vitiello, G.: Quantization, group contraction and zero point energy. Phys. Lett. A 310, 393–399 (2003); Blasone, M., Jizba, P., Scardigli, F., Vitiello, G.: Dissipation and quantization in composite systems. Phys. Lett. A 373, 4106–4112 (2009)
Umezawa, H., Matsumoto, H., Tachiki, M.: Thermo Field Dynamics and Condensed States. North-Holland, Amsterdam (1982)
Celeghini, E., De Martino, S., De Siena, S., Rasetti, M., Vitiello, G.: Quantum groups, coherent states, squeezing and lattice quantum mechanics. Annals Phys. 241, 50–67 (1995); Celeghini, E., Rasetti, M., Tarlini, M., Vitiello, G.: SU(1,1) Squeezed States as Damped Oscillators. Mod. Phys. Lett. B 3, 1213–1220 (1989); Celeghini, E., Rasetti, M., Vitiello, G.: On squeezing and quantum groups. Phys. Rev. Lett. 66, 2056–2059 (1991)
Sivasubramanian, S., Srivastava, Y.N., Vitiello, G., Widom, A.: Quantum dissipation induced noncommutative geometry. Phys. Lett. A 311, 97–105 (2003)
Freeman, W.J., Livi, R., Obinata, M., Vitiello, G.: Cortical phase transitions, non-equilibrium thermodynamics and the time-dependent Ginzburg-Landau equation. Int. J. Mod. Phys. B 26, 1250035 (2012) arXiv:1110.3677v1 [physics.bio-ph]
Celeghini, E., De Martino, S., De Siena, S., Iorio, A., Rasetti, M., Vitiello, G.: Thermo field dynamics and quantum algebras. Phys. Lett. A 244, 455–461 (1998)
Iorio, A., Vitiello, G.: Quantum groups and Von Neumann theorem. Mod. Phys. Lett. B 8, 269–276 (1994)
Banerjee, R.: Dissipation and noncommutativity in planar quantum mechanics. Mod. Phys. Lett. A 17, 631–645 (2002); Banerjee, R., Mukherjee, P.: A Canonical approach to dissipation. J. Phys. A: Math. Gen. 35, 5591–5598 (2002)
Chen, Y.S., Choi, W., Papanikolaou, S., Sethna, J.P.: Bending Crystals: Emergence of fractal dislocation structures. Phys. Rev. Lett. 105, 105501 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Vitiello, G. (2012). Fractals, Dissipation and Coherent States. In: Busemeyer, J.R., Dubois, F., Lambert-Mogiliansky, A., Melucci, M. (eds) Quantum Interaction. QI 2012. Lecture Notes in Computer Science, vol 7620. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35659-9_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-35659-9_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35658-2
Online ISBN: 978-3-642-35659-9
eBook Packages: Computer ScienceComputer Science (R0)