Abstract
In this paper we investigate the introduction of Reservoir Computing (RC) neural network models in the context of AAL (Ambient Assisted Living) and self-learning robot ecologies, with a focus on the computational constraints related to the implementation over a network of sensors. Specifically, we experimentally study the relationship between architectural parameters influencing the computational cost of the models and the performance on a task of user movements prediction from sensors signal streams. The RC shows favorable scaling properties results for the analyzed AAL task.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amato, G., Broxvall, M., Chessa, S., Dragone, M., Gennaro, C., Lopez, R., Maguire, L., Mcginnity, M., Micheli, A., Renteria, A., O’Hare, G., Pecora, F.: Robotic UBIquitous COgnitive Network. In: Proceedings of the 3rd International Symposium on Ambient Intelligence (ISAMI), Salamanca, March 28-30 (To Appear, 2012)
Antonelo, E.A., Schrauwen, B., Stroobandt, D.: Event detection and localization for small mobile robots using reservoir computing. Neural Networks 21(6), 862–871 (2008)
Bacciu, D., Broxvall, M., Coleman, S., Dragone, M., Gallicchio, C., Gennaro, C., Guzman, R., Lopez, R., Lozano-Peiteado, H., Ray, A., Renteria, A., Saffiotti, A., Vairo, C.: Self-Sustaining Learning for Robotic Ecologies. In: Proceedings of the 1st International Conference on Sensor Networks (SensorNets), Rome, February 24- 26 (To Appear, 2012)
Bacciu, D., Gallicchio, C., Micheli, A., Chessa, S., Barsocchi, P.: Predicting user movements in heterogeneous indoor environments by reservoir computing. In: Bhatt, M., Guesgen, H.W., Augusto, J.C. (eds.) Proceedings of the IJCAI Workshop on Space, Time and Ambient Intelligence STAMI 2011, pp. 1–6 (2011)
Baronti, P., Pillai, P., Chook, V.W.C., Chessa, S., Gotta, A., Hu, Y.F.: Wireless sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee standards. Computer Communications 30(7), 1655–1695 (2007)
Chang, M., Terzis, A., Bonnet, P.: Mote-Based Online Anomaly Detection Using Echo State Networks. In: Krishnamachari, B., Suri, S., Heinzelman, W., Mitra, U. (eds.) DCOSS 2009. LNCS, vol. 5516, pp. 72–86. Springer, Heidelberg (2009)
Crossbow Technology Inc.: http://www.xbow.com
Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, L., Burgelman, J.: Scenarios for Ambient Intelligence in 2010. Tech. rep., IST Advisory Group (February 2001)
Gallicchio, C., Micheli, A.: Architectural and markovian factors of echo state networks. Neural Networks 24(5), 440–456 (2011)
Gallicchio, C., Micheli, A., Barsocchi, P., Chessa, S.: User movements forecasting by reservoir computing using signal streams produced by mote-class sensors. In: Del Ser, J., Jorswieck, E.A., Miguez, J., Matinmikko, M., Palomar, D.P., Salcedo-Sanz, S., Gil-Lopez, S. (eds.) Mobilight 2011. LNICST, vol. 81, pp. 151–168. Springer, Heidelberg (2012)
Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks. Tech. rep., GMD - German National Research Institute for Computer Science (2001)
Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004)
Jaeger, H., Lukosevicius, M., Popovici, D., Siewert, U.: Optimization and applications of echo state networks with leaky-integrator neurons. Neural Networks 20(3), 335–352 (2007)
Lukosevicius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Computer Science Review 3(3), 127–149 (2009)
Rodan, A., Tiňo, P.: Minimum complexity echo state network. IEEE Transactions on Neural Networks 22(1), 131–144 (2011)
Verstraeten, D., Schrauwen, B., D’Haene, M., Stroobandt, D.: An experimental unification of reservoir computing methods. Neural Networks 20(3), 391–403 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Bacciu, D., Chessa, S., Gallicchio, C., Micheli, A., Barsocchi, P. (2013). An Experimental Evaluation of Reservoir Computation for Ambient Assisted Living. In: Apolloni, B., Bassis, S., Esposito, A., Morabito, F. (eds) Neural Nets and Surroundings. Smart Innovation, Systems and Technologies, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35467-0_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-35467-0_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35466-3
Online ISBN: 978-3-642-35467-0
eBook Packages: EngineeringEngineering (R0)