Integration of Neural Network Preprocessing Model for OMI Aerosol Optical Depth Data Assimilation | SpringerLink
Skip to main content

Integration of Neural Network Preprocessing Model for OMI Aerosol Optical Depth Data Assimilation

  • Conference paper
Advanced Machine Learning Technologies and Applications (AMLTA 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 322))

Abstract

A regional chemical transport model assimilated with daily mean satellite and ground based Aerosol Optical Depth (AOD) observations is used to produce three dimensional distributions of aerosols throughout Europe for the year 2005. In this paper, the AOD measurements of the Ozone Monitoring Instrument (OMI) are assimilated with Polyphemus model. In order to overcome missing satellite data, a methodology for pre-processing AOD based on Neural Network (NN) is proposed. The aerosol forecasts involve two-phase process assimilation, and then a feedback correction process. During the assimilation phase, the total column AOD is estimated from the model aerosol fields. The model state is then adjusted to improve the agreement between the simulated AOD and satellite retrievals of AOD. The results show that the assimilation of AOD observations significantly improves the forecast for total mass. The errors on aerosol chemical composition are reduced and are sometimes vanished by the assimilation procedure and NN preprocessing, which shows a big contribution to the assimilation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ramanathan, V., Crutzen, P.J., Kiehl, J.T., Rosenfeld, D.: Atmosphere – Aerosols, climate, and the hydrological cycle. Science 294(5549), 2119–2124 (2002)

    Article  Google Scholar 

  2. Diner, D.J., et al.: Level 2 Aerosol Retrieval Algorithm Theoretical Basis. Jet Propulsion Lab., Pasadena, CA, JPL Tech. Doc. D-11400 (2008)

    Google Scholar 

  3. Wen, G., Tsay, S.C., Cahalan, R.F., Oreopoulos, L.: Path Radiance Technique for Retrieving Aerosol Optical Thickness over Land. J. Geophys. Res. 104, 31321–31332 (1999)

    Article  Google Scholar 

  4. Han, B., Braverman, A., Vucetic, S., Obradovic, Z.: Construction of an Accurate Geospatial Predictor by Fusion of Global and Local Models. In: 8th Int’l Conf. Information Fusion, Philadelphia, PA (2005)

    Google Scholar 

  5. Torres, O., Decae, R., Veefkind, J.P., de Leeuw, G.: OMI Aerosol Retrieval Algorithm. OMI Algorithm Theoretical Basis Document: Clouds, Aerosols, and Surface UV Irradiance 3(2) (2002)

    Google Scholar 

  6. Ali, A., Amin, S.E., Ramadan, H.H., Tolba, M.F.: Ozone monitoring instrument aerosol products: Algorithm modeling and validation with ground based measurements over Europe. In: The 2011 International Conference on Computer Engineering & Systems (ICCES 2011), Cairo, Egypt (2011)

    Google Scholar 

  7. Ali, A., Amin, S.E., Ramadan, H.H., Tolba, M.F.: Ozone Monitoring Instrument aerosol products: a comparison study with ground-based airborne sun photometer measurements over Europe. Int. J. Remote Sens. 33(20), 6321–6341 (2012)

    Article  Google Scholar 

  8. Boutahar, J., Lacour, S., Mallet, V., Quelo, D., Roustan, Y., Sportisse, B.: Development and validation of a fully modular platform for numerical modelling of air pollution: POLAIR. Int. J. Environ. Pollut. 22(1/2), 17–28 (2004)

    Google Scholar 

  9. Debry, E., Fahey, K., Sartelet, K., Sportisse, B., Tombette, M.: Technical note: A new SIze REsolved Aerosol Model, Atmos. Chem. Phys. 7, 1537–1547 (2007)

    Google Scholar 

  10. Mallet, V., Quelo: Technical Note: The air quality modeling system Polyphemus. Atmos. Chem. Phys. 7, 5479–5487 (2007)

    Article  Google Scholar 

  11. Sartelet, K.N., Debry, E., Fahey, K.M., Roustan, Y., Tombette, M., Sportisse, B.: Simulation of aerosols and gas-phase species over Europe with the Polyphemus system. Part I: model-to-data comparison for 2001. Atmos. Environ. 29, 6116–6131 (2007)

    Article  Google Scholar 

  12. Tombette, M., Sportisse, B.: Aerosol modeling at a regional scale: Model-to-data comparison and sensitivity analysis over Greater Paris. Atmos. Environ. 41, 6941–6950 (2007)

    Article  Google Scholar 

  13. Hollingsworth, A., Lonnberg, P.: The statistical structure of short-range forecast errors as de-termined from radiosonde data. Part I: the wind field. Tellus 38A, 111–136 (1986)

    Article  Google Scholar 

  14. Dunlea, E.J., Herndon, S.C.: Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment. Atmos. Chem. Phys. 7, 2691–2704 (2007)

    Article  Google Scholar 

  15. Debry, E., Fahey, K., Sartelet, K., Sportisse, B., Tombette, M.: Technical note: A new SIze REsolved Aerosol Model. Atmos. Chem. Phys. 7, 1537–1547 (2007)

    Article  Google Scholar 

  16. Schell, B., Ackermann, I.J., Hass, H., Binkowski, F.S., Ebel, A.: Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. Journal of Geophysical Research 106, 28275–28293 (2001)

    Article  Google Scholar 

  17. Boylan, J.W.: PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models. Atmos. Environ. 40, 4946–4959 (2006)

    Article  Google Scholar 

  18. Huneeus, N.: Assimilation variationnelle d’observations satellitaires dans un mod‘ele atmosphérique d’aérosols, Ph.D. thesis, Université des Sciences et Technologies de Lille (2007)

    Google Scholar 

  19. Wu, D., Hartman, A., Ward, N., Eisen, J.A.: An Automated Phylogenetic Tree-Based Small Subunit rRNA Taxonomy and Alignment Pipeline (STAP). PLoS ONE 3(7), e2566 (2008), doi:10.1371

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ali, A., Amin, S.E., Ramadan, H.H., Tolba, M.F. (2012). Integration of Neural Network Preprocessing Model for OMI Aerosol Optical Depth Data Assimilation. In: Hassanien, A.E., Salem, AB.M., Ramadan, R., Kim, Th. (eds) Advanced Machine Learning Technologies and Applications. AMLTA 2012. Communications in Computer and Information Science, vol 322. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35326-0_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35326-0_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35325-3

  • Online ISBN: 978-3-642-35326-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics