Subjectivity and Sentiment Analysis of Arabic: A Survey | SpringerLink
Skip to main content

Subjectivity and Sentiment Analysis of Arabic: A Survey

  • Conference paper
Advanced Machine Learning Technologies and Applications (AMLTA 2012)

Abstract

Subjectivity and sentiment analysis (SSA) has recently gained considerable attention, but most of the resources and systems built so far are tailored to English and other Indo-European languages. The need for designing systems for other languages is increasing, especially as blogging and micro-blogging websites become popular throughout the world. This paper surveys different techniques for SSA for Arabic. After a brief synopsis about Arabic, we describe the main existing techniques and test corpora for Arabic SSA that have been introduced in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Internet world stats, http://www.internetworldstats.com/stats7.htm

  2. Abbasi, A., Chen, H., Salem, A.: Sentiment analysis in multiple languages: Feature selection for opinion classification in Web forums. ACM Transactions on Information Systems (TOIS) 26(3), 12 (2008)

    Article  Google Scholar 

  3. AbdelRahman, S., Elarnaoty, M., Magdy, M., Fahmy, A.: Integrated machine learning techniques for arabic named entity recognition. International Journal of Computer Science Issues, IJCSI 7(4), 27–36 (2010)

    Google Scholar 

  4. Abdul-Mageed, M., Diab, M.: AWATIF: A Multi-Genre Corpus for Modern Standard Arabic Subjectivity and Sentiment Analysis. In: Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC 2012). European Language Resources Association, ELRA (2012)

    Google Scholar 

  5. Abdul-Mageed, M., Diab, M.: Toward building a large-scale Arabic sentiment lexicon. In: Proceedings of the 6th International Global Word-Net Conference, Matsue, Japan (2012)

    Google Scholar 

  6. Abdul-Mageed, M., Diab, M., Korayem, M.: Subjectivity and sentiment analysis of modern standard Arabic. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, vol. 2, pp. 587–591. Association for Computational Linguistics (2011) (short papers)

    Google Scholar 

  7. Abdul-Mageed, M., Diab, M.T.: Subjectivity and sentiment annotation of modern standard arabic newswire. In: Proceedings of the 5th Linguistic Annotation Workshop, LAW V 2011, pp. 110–118 (2011)

    Google Scholar 

  8. Abdul-Mageed, M., Korayem, M.: Automatic Identification of Subjectivity in Morphologically Rich Languages: The Case of Arabic. In: Proceedings of the 1st Workshop on Computational Approaches to Subjectivity and Sentiment Analysis (WASSA), pp. 2–6 (2010)

    Google Scholar 

  9. Abdul-Mageed, M., Korayem, M., YoussefAgha, A.: Yes we can?: Subjectivity annotation and tagging for the health domain. In: Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP, Hissar, Bulgaria (2011)

    Google Scholar 

  10. Abdul-Mageed, M., Kuebler, S., Diab, M.: Samar: A system for subjectivity and sentiment analysis of arabic social media. In: Proceedings of the 3rd Workshop in Computational Approaches to Subjectivity and Sentiment Analysis, pp. 19–28. Association for Computational Linguistics (2012)

    Google Scholar 

  11. Agić, Ž., Ljubešić, N., Tadić, M.: Towards sentiment analysis of financial texts in croatian. In: Proceedings of the Seventh International Conference on Language Resources and Evaluation, LREC 2010 (2010)

    Google Scholar 

  12. Ahmad, K., Cheng, D., Almas, Y.: Multi-lingual sentiment analysis of financial news streams. In: Proceedings of the 1st International Conference on Grid in Finance (2006)

    Google Scholar 

  13. Almas, Y., Ahmad, K.: A note on extracting sentiments in financial news in English, Arabic & Urdu. In: Proceedings of Workshop on Computational Approaches to Arabic Script-based Languages (2007)

    Google Scholar 

  14. Banfield, A.: Unspeakable sentences: Narration and representation in the language of fiction. Routledge & Kegan Paul Boston (1982)

    Google Scholar 

  15. Brooke, J., Tofiloski, M., Taboada, M.: Cross-linguistic sentiment analysis: From English to Spanish. In: Proceedings of the 7th International Conference on Recent Advances in Natural Language Processing, Borovets, Bulgaria, pp. 50–54 (2009)

    Google Scholar 

  16. Denecke, K.: Using SentiWordNet for multilingual sentiment analysis. In: IEEE 24th International Conference on Data Engineering Workshop, ICDEW, pp. 507–512. IEEE (2008)

    Google Scholar 

  17. El-Halees, A.: Arabic Opinion Mining Using Combined Classification Approach. In: Proceedings of the International Arab Conference on Information Technology, ACIT (2011)

    Google Scholar 

  18. Elarnaoty, M., AbdelRahman, S., Fahmy, A.: A Machine Learning Approach For Opinion Holder Extraction Arabic Language. CoRR, abs/1206.1011 (2012)

    Google Scholar 

  19. Elhawary, M., Elfeky, M.: Mining Arabic Business Reviews. In: Proceedings of International Conference on Data Mining Workshops (ICDMW), pp. 1108–1113. IEEE (2010)

    Google Scholar 

  20. Esuli, A., Sebastiani, F.: Sentiwordnet: A publicly available lexical resource for opinion mining. In: Proceedings of the 5th Conference on Language Resources and Evaluation (LREC 2006), vol. 6, pp. 417–422. Citeseer (2006)

    Google Scholar 

  21. Farra, N., Challita, E., Assi, R., Hajj, H.: Sentence-Level and Document-Level Sentiment Mining for Arabic Texts. In: Proceedings of International Conference on Data Mining Workshops (ICDMW), pp. 1114–1119. IEEE (2010)

    Google Scholar 

  22. Habash, N.: Introduction to Arabic natural language processing. Synthesis Lectures on Human Language Technologies 3(1), 1–187 (2010)

    Article  Google Scholar 

  23. Habash, N., Rambow, O., Roth, R.: Mada+ tokan: A toolkit for arabic tokenization, diacritization, morphological disambiguation, POS tagging, stemming and lemmatization. In: Proceedings of the 2nd International Conference on Arabic Language Resources and Tools (MEDAR), pp. 242–245 (2009)

    Google Scholar 

  24. Kim, J., Jung, H., Lee, Y., Lee, J.: Conveying Subjectivity of a Lexicon of One Language into Another Using a Bilingual Dictionary and a Link Analysis Algorithm. International Journal of Computer Processing of Oriental Languages 22(2), 205–218 (2009)

    Google Scholar 

  25. Lin, Z., Tan, S., Cheng, X.: Language-independent sentiment classification using three common words. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp. 1041–1046. ACM (2011)

    Google Scholar 

  26. Liu, B.: Sentiment analysis and subjectivity. In: Handbook of Natural Language Processing, pp. 627–666 (2010)

    Google Scholar 

  27. Mihalcea, R., Banea, C., Wiebe, J.: Learning multilingual subjective language via cross-lingual projections. In: Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, vol. 45, pp. 976–983. Association for Computational Linguistics (2007)

    Google Scholar 

  28. Mullen, T., Collier, N.: Sentiment analysis using support vector machines with diverse information sources. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, EMNLP, vol. 4, pp. 412–418 (2004)

    Google Scholar 

  29. Pang, B., Lee, L.: A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, p. 271. Association for Computational Linguistics (2004)

    Google Scholar 

  30. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval 2(1-2), 1–135 (2008)

    Article  Google Scholar 

  31. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: Sentiment classification using machine learning techniques. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, pp. 79–86. Association for Computational Linguistics (2002)

    Google Scholar 

  32. Raychev, V., Nakov, P.: Language-independent sentiment analysis using subjectivity and positional information. In: Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP, pp. 360–364 (2009)

    Google Scholar 

  33. Rushdi-Saleh, M., Martín-Valdivia, M., Ureña-López, L., Perea-Ortega, J.: Bilingual Experiments with an Arabic-English Corpus for Opinion Mining, pp. 740–745 (2011)

    Google Scholar 

  34. Rushdi-Saleh, M., Martín-Valdivia, M., Ureña-López, L., Perea-Ortega, J.: Oca: Opinion corpus for Arabic. Journal of the American Society for Information Science and Technology 62(10), 2045–2054 (2011)

    Article  Google Scholar 

  35. Versteegh, K., Versteegh, C.: The Arabic Language. Columbia University Press (1997)

    Google Scholar 

  36. Whitelaw, C., Garg, N., Argamon, S.: Using appraisal groups for sentiment analysis. In: Proceedings of the 14th ACM International Conference on Information and Knowledge Management, pp. 625–631. ACM (2005)

    Google Scholar 

  37. Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 347–354. Association for Computational Linguistics (2005)

    Google Scholar 

  38. Zhai, Z., Xu, H., Li, J., Jia, P.: Feature Subsumption for Sentiment Classification in Multiple Languages. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010, Part II. LNCS, vol. 6119, pp. 261–271. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Korayem, M., Crandall, D., Abdul-Mageed, M. (2012). Subjectivity and Sentiment Analysis of Arabic: A Survey. In: Hassanien, A.E., Salem, AB.M., Ramadan, R., Kim, Th. (eds) Advanced Machine Learning Technologies and Applications. AMLTA 2012. Communications in Computer and Information Science, vol 322. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35326-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35326-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35325-3

  • Online ISBN: 978-3-642-35326-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics