Abstract
Subjectivity and sentiment analysis (SSA) has recently gained considerable attention, but most of the resources and systems built so far are tailored to English and other Indo-European languages. The need for designing systems for other languages is increasing, especially as blogging and micro-blogging websites become popular throughout the world. This paper surveys different techniques for SSA for Arabic. After a brief synopsis about Arabic, we describe the main existing techniques and test corpora for Arabic SSA that have been introduced in the literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Internet world stats, http://www.internetworldstats.com/stats7.htm
Abbasi, A., Chen, H., Salem, A.: Sentiment analysis in multiple languages: Feature selection for opinion classification in Web forums. ACM Transactions on Information Systems (TOIS) 26(3), 12 (2008)
AbdelRahman, S., Elarnaoty, M., Magdy, M., Fahmy, A.: Integrated machine learning techniques for arabic named entity recognition. International Journal of Computer Science Issues, IJCSI 7(4), 27–36 (2010)
Abdul-Mageed, M., Diab, M.: AWATIF: A Multi-Genre Corpus for Modern Standard Arabic Subjectivity and Sentiment Analysis. In: Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC 2012). European Language Resources Association, ELRA (2012)
Abdul-Mageed, M., Diab, M.: Toward building a large-scale Arabic sentiment lexicon. In: Proceedings of the 6th International Global Word-Net Conference, Matsue, Japan (2012)
Abdul-Mageed, M., Diab, M., Korayem, M.: Subjectivity and sentiment analysis of modern standard Arabic. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, vol. 2, pp. 587–591. Association for Computational Linguistics (2011) (short papers)
Abdul-Mageed, M., Diab, M.T.: Subjectivity and sentiment annotation of modern standard arabic newswire. In: Proceedings of the 5th Linguistic Annotation Workshop, LAW V 2011, pp. 110–118 (2011)
Abdul-Mageed, M., Korayem, M.: Automatic Identification of Subjectivity in Morphologically Rich Languages: The Case of Arabic. In: Proceedings of the 1st Workshop on Computational Approaches to Subjectivity and Sentiment Analysis (WASSA), pp. 2–6 (2010)
Abdul-Mageed, M., Korayem, M., YoussefAgha, A.: Yes we can?: Subjectivity annotation and tagging for the health domain. In: Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP, Hissar, Bulgaria (2011)
Abdul-Mageed, M., Kuebler, S., Diab, M.: Samar: A system for subjectivity and sentiment analysis of arabic social media. In: Proceedings of the 3rd Workshop in Computational Approaches to Subjectivity and Sentiment Analysis, pp. 19–28. Association for Computational Linguistics (2012)
Agić, Ž., Ljubešić, N., Tadić, M.: Towards sentiment analysis of financial texts in croatian. In: Proceedings of the Seventh International Conference on Language Resources and Evaluation, LREC 2010 (2010)
Ahmad, K., Cheng, D., Almas, Y.: Multi-lingual sentiment analysis of financial news streams. In: Proceedings of the 1st International Conference on Grid in Finance (2006)
Almas, Y., Ahmad, K.: A note on extracting sentiments in financial news in English, Arabic & Urdu. In: Proceedings of Workshop on Computational Approaches to Arabic Script-based Languages (2007)
Banfield, A.: Unspeakable sentences: Narration and representation in the language of fiction. Routledge & Kegan Paul Boston (1982)
Brooke, J., Tofiloski, M., Taboada, M.: Cross-linguistic sentiment analysis: From English to Spanish. In: Proceedings of the 7th International Conference on Recent Advances in Natural Language Processing, Borovets, Bulgaria, pp. 50–54 (2009)
Denecke, K.: Using SentiWordNet for multilingual sentiment analysis. In: IEEE 24th International Conference on Data Engineering Workshop, ICDEW, pp. 507–512. IEEE (2008)
El-Halees, A.: Arabic Opinion Mining Using Combined Classification Approach. In: Proceedings of the International Arab Conference on Information Technology, ACIT (2011)
Elarnaoty, M., AbdelRahman, S., Fahmy, A.: A Machine Learning Approach For Opinion Holder Extraction Arabic Language. CoRR, abs/1206.1011 (2012)
Elhawary, M., Elfeky, M.: Mining Arabic Business Reviews. In: Proceedings of International Conference on Data Mining Workshops (ICDMW), pp. 1108–1113. IEEE (2010)
Esuli, A., Sebastiani, F.: Sentiwordnet: A publicly available lexical resource for opinion mining. In: Proceedings of the 5th Conference on Language Resources and Evaluation (LREC 2006), vol. 6, pp. 417–422. Citeseer (2006)
Farra, N., Challita, E., Assi, R., Hajj, H.: Sentence-Level and Document-Level Sentiment Mining for Arabic Texts. In: Proceedings of International Conference on Data Mining Workshops (ICDMW), pp. 1114–1119. IEEE (2010)
Habash, N.: Introduction to Arabic natural language processing. Synthesis Lectures on Human Language Technologies 3(1), 1–187 (2010)
Habash, N., Rambow, O., Roth, R.: Mada+ tokan: A toolkit for arabic tokenization, diacritization, morphological disambiguation, POS tagging, stemming and lemmatization. In: Proceedings of the 2nd International Conference on Arabic Language Resources and Tools (MEDAR), pp. 242–245 (2009)
Kim, J., Jung, H., Lee, Y., Lee, J.: Conveying Subjectivity of a Lexicon of One Language into Another Using a Bilingual Dictionary and a Link Analysis Algorithm. International Journal of Computer Processing of Oriental Languages 22(2), 205–218 (2009)
Lin, Z., Tan, S., Cheng, X.: Language-independent sentiment classification using three common words. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp. 1041–1046. ACM (2011)
Liu, B.: Sentiment analysis and subjectivity. In: Handbook of Natural Language Processing, pp. 627–666 (2010)
Mihalcea, R., Banea, C., Wiebe, J.: Learning multilingual subjective language via cross-lingual projections. In: Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, vol. 45, pp. 976–983. Association for Computational Linguistics (2007)
Mullen, T., Collier, N.: Sentiment analysis using support vector machines with diverse information sources. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, EMNLP, vol. 4, pp. 412–418 (2004)
Pang, B., Lee, L.: A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, p. 271. Association for Computational Linguistics (2004)
Pang, B., Lee, L.: Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval 2(1-2), 1–135 (2008)
Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: Sentiment classification using machine learning techniques. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, pp. 79–86. Association for Computational Linguistics (2002)
Raychev, V., Nakov, P.: Language-independent sentiment analysis using subjectivity and positional information. In: Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP, pp. 360–364 (2009)
Rushdi-Saleh, M., Martín-Valdivia, M., Ureña-López, L., Perea-Ortega, J.: Bilingual Experiments with an Arabic-English Corpus for Opinion Mining, pp. 740–745 (2011)
Rushdi-Saleh, M., Martín-Valdivia, M., Ureña-López, L., Perea-Ortega, J.: Oca: Opinion corpus for Arabic. Journal of the American Society for Information Science and Technology 62(10), 2045–2054 (2011)
Versteegh, K., Versteegh, C.: The Arabic Language. Columbia University Press (1997)
Whitelaw, C., Garg, N., Argamon, S.: Using appraisal groups for sentiment analysis. In: Proceedings of the 14th ACM International Conference on Information and Knowledge Management, pp. 625–631. ACM (2005)
Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 347–354. Association for Computational Linguistics (2005)
Zhai, Z., Xu, H., Li, J., Jia, P.: Feature Subsumption for Sentiment Classification in Multiple Languages. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010, Part II. LNCS, vol. 6119, pp. 261–271. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Korayem, M., Crandall, D., Abdul-Mageed, M. (2012). Subjectivity and Sentiment Analysis of Arabic: A Survey. In: Hassanien, A.E., Salem, AB.M., Ramadan, R., Kim, Th. (eds) Advanced Machine Learning Technologies and Applications. AMLTA 2012. Communications in Computer and Information Science, vol 322. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35326-0_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-35326-0_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35325-3
Online ISBN: 978-3-642-35326-0
eBook Packages: Computer ScienceComputer Science (R0)