A Practical Guide to Training Restricted Boltzmann Machines | SpringerLink
Skip to main content

A Practical Guide to Training Restricted Boltzmann Machines

  • Chapter
Neural Networks: Tricks of the Trade

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7700))

Abstract

Restricted Boltzmann machines (RBMs) have been used as generative models of many different types of data. RBMs are usually trained using the contrastive divergence learning procedure. This requires a certain amount of practical experience to decide how to set the values of numerical meta-parameters. Over the last few years, the machine learning group at the University of Toronto has acquired considerable expertise at training RBMs and this guide is an attempt to share this expertise with other machine learning researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 18589
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Carreira-Perpignan, M.A., Hinton, G.E.: On contrastive divergence learning. In: Artificial Intelligence and Statistics (2005)

    Google Scholar 

  2. Freund, Y., Haussler, D.: Unsupervised learning of distributions on binary vectors using two layer networks. In: Advances in Neural Information Processing Systems 4, pp. 912–919. Morgan Kaufmann, San Mateo (1992)

    Google Scholar 

  3. Ghahramani, Z., Hinton, G.: The EM algorithm for mixtures of factor analyzers. Technical Report CRG-TR-96-1, University of Toronto (May 1996)

    Google Scholar 

  4. Hinton, G.E.: Relaxation and its role in vision. PhD Thesis (1978)

    Google Scholar 

  5. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Computation 14(8), 1711–1800 (2002)

    Article  MATH  Google Scholar 

  6. Hinton, G.E.: To recognize shapes, first learn to generate images. In: Computational Neuroscience: Theoretical Insights into Brain Function (2007)

    Google Scholar 

  7. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Computation 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hinton, G.E., Osindero, S., Welling, M., Teh, Y.: Unsupervised discovery of non-linear structure using contrastive backpropagation. Cognitive Science 30, 725–731 (2006b)

    Article  Google Scholar 

  9. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  10. Marks, T.K., Movellan, J.R.: Diffusion networks, product of experts, and factor analysis. In: Proc. Int. Conf. on Independent Component Analysis, pp. 481–485 (2001)

    Google Scholar 

  11. Mohamed, A.R., Hinton, G.E.: Phone recognition using restricted boltzmann machines. In: ICASSP 2010 (2010)

    Google Scholar 

  12. Mohamed, A.R., Dahl, G., Hinton, G.E.: Deep belief networks for phone recognition. In: NIPS 22 Workshop on Deep Learning for Speech Recognition (2009)

    Google Scholar 

  13. Nair, V., Hinton, G.E.: 3-d object recognition with deep belief nets. In: Advances in Neural Information Processing Systems, vol. 22, pp. 1339–1347 (2009)

    Google Scholar 

  14. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proc. 27th International Conference on Machine Learning (2010)

    Google Scholar 

  15. Salakhutdinov, R.R., Hinton, G.E.: Replicated softmax: An undirected topic model. In: Advances in Neural Information Processing Systems, vol. 22 (2009)

    Google Scholar 

  16. Salakhutdinov, R.R., Murray, I.: On the quantitative analysis of deep belief networks. In: Proceedings of the International Conference on Machine Learning, vol. 25, pp. 872–879 (2008)

    Google Scholar 

  17. Salakhutdinov, R.R., Mnih, A., Hinton, G.E.: Restricted Boltzmann machines for collaborative filtering. In: Ghahramani, Z. (ed.) Proceedings of the International Conference on Machine Learning, vol. 24, pp. 791–798. ACM (2007)

    Google Scholar 

  18. Smolensky, P.: Information processing in dynamical systems: Foundations of harmony theory. In: Rumelhart, D.E., McClelland, J.L. (eds.) Parallel Distributed Processing, vol. 1, ch. 6, pp. 194–281. MIT Press, Cambridge (1986)

    Google Scholar 

  19. Sutskever, I., Tieleman: On the convergence properties of contrastive divergence. In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS), Sardinia, Italy (2010)

    Google Scholar 

  20. Taylor, G., Hinton, G.E., Roweis, S.T.: Modeling human motion using binary latent variables. In: Advances in Neural Information Processing Systems. MIT Press (2006)

    Google Scholar 

  21. Teh, Y.W., Hinton, G.E.: Rate-coded restricted Boltzmann machines for face recognition. In: Advances in Neural Information Processing Systems, vol. 13, pp. 908–914 (2001)

    Google Scholar 

  22. Tieleman, T.: Training restricted Boltzmann machines using approximations to the likelihood gradient. In: Proceedings of the Twenty-first International Conference on Machine Learning (ICML 2008). ACM (2008)

    Google Scholar 

  23. Tieleman, T., Hinton, G.E.: Using fast weights to improve persistent contrastive divergence. In: Proceedings of the 26th International Conference on Machine Learning, pp. 1033–1040. ACM, New York (2009)

    Google Scholar 

  24. Welling, M., Rosen-Zvi, M., Hinton, G.E.: Exponential family harmoniums with an application to information retrieval. In: Advances in Neural Information Processing Systems, pp. 1481–1488. MIT Press, Cambridge (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hinton, G.E. (2012). A Practical Guide to Training Restricted Boltzmann Machines. In: Montavon, G., Orr, G.B., Müller, KR. (eds) Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science, vol 7700. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35289-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35289-8_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35288-1

  • Online ISBN: 978-3-642-35289-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics