Abstract
In this paper, we study fundamental properties of the Self-Organizing Map (SOM) and the Generative Topographic Mapping (GTM), ramifications of the initialization of the algorithms and properties of the algorithms in presence of missing data. We show that the commonly used principal component analysis (PCA) initialization of the GTM does not guarantee good learning results with complex, high-dimensional data. We propose initializing the GTM with SOM and demonstrate usefulness of this improvement using the ISOLET data set. We also propose a revision to the batch SOM algorithm called the Imputation SOM and show that the new algorithm is more robust in presence of missing data. We compare the performance of the algorithms in the missing value imputation task. We also announce a revised version of the SOM Toolbox for Matlab with added GTM functionality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
NETLAB: algorithms for pattern recognition. Springer-Verlag New York, Inc., New York (2002)
Bishop, C.M., Svensén, M., Williams, C.K.I.: GTM: The generative topographic mapping. Neural Computation 10 (1998)
Bishop, C.M., Williams, C.K.I.: Developments of the Generative Topographic Mapping. Neurocomputing 21, 203–224 (1998)
Cottrell, M., Letrémy, P.: Missing values: processing with the Kohonen algorithm. In: Applied Stochastic Models and Data Analysis, pp. 489–496 (2005)
Dittenbach, M., Merkl, D., Rauber, A.: The growing hierarchical self-organizing map. In: IJCNN, pp. 15–19 (2000)
Fanty, M.A., Cole, R.A.: Spoken letter recognition. In: NIPS, pp. 220–226 (1990)
Fessant, F., Midenet, S.: Self-organising map for data imputation and correction in surveys. Neural Computing and Applications 10(4), 300–310 (2002)
Fort, J.C., Letrémy, P., Cottrell, M.: Advantages and drawbacks of the Batch Kohonen algorithm. In: ESANN, pp. 223–230 (2002)
Frank, A., Asuncion, A.: UCI machine learning repository (2010), http://archive.ics.uci.edu/ml
Fritzke, B.: Grorwing cell structures–a self-organizing network for unsupervised and supervised learning. Neural Networks 7(9), 1441–1460 (1994)
Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Prentice Hall (2008)
Ilin, A., Raiko, T.: Practical approaches to principal component analysis in the presence of missing values. Journal of Machine Learning Research 99, 1957–2000 (2010)
Kaski, S., Lagus, K.: Comparing Self-organizing Maps. In: Vorbrüggen, J.C., von Seelen, W., Sendhoff, B. (eds.) ICANN 1996. LNCS, vol. 1112, pp. 809–814. Springer, Heidelberg (1996)
Kiviluoto, K., Oja, E.: S-Map: A Network with a Simple Self-Organization Algorithm for Generative Topographic Mappings. In: Advances in Neural Information Processing Systems, pp. 549–555. Morgan Kaufmann Publishers (1998)
Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological Cybernetics 43, 59–69 (1982)
Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer-Verlag New York, Inc., Secaucus (2001)
Koikkalainen, P., Oja, E.: Self-organizing hierarchical feature maps. In: IJCNN 1990, pp. 279–285 (1990)
Merlin, P., Sorjamaa, A., Maillet, B., Lendasse, A.: X-SOM and L-SOM: a double classification approach for missing value imputation. Neurocomputing 73(7-9), 1103–1108 (2010)
Rustum, R., Adeloye, A.J.: Replacing outliers and missing values from activated sludge data using Kohonen Self-Organizing Map. Journal of Environmental Engineering 133(9), 909–916 (2007)
Sorjamaa, A.: Methodologies for Time Series Prediction and Missing Value Imputation. Ph.D. thesis, Aalto University School of Science and Technology (2010)
Vatanen, T.: Missing Value Imputation Using Subspace Methods with Applications on Survey Data. Master’s thesis, Aalto University, Espoo, Finland (2012)
Venna, J., Kaski, S.: Local multidimensional scaling. Neural Networks 19(6-7), 889–899 (2006)
Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: Self-organizing map in matlab: the SOM Toolbox. In: The Matlab DSP Conference, pp. 35–40 (2000)
Villmann, T., Der, R., Herrmann, J.M., Martinetz, T.: Topology preservation in self-organizing feature maps: exact definition and measurement. IEEE Trans. Neural Netw. Learning Syst. 8(2), 256–266 (1997)
Wang, S.: Application of Self-Organising Maps for data mining with incomplete data sets. Neural Computing and Applications 12, 42–48 (2003)
Zhang, L., Merényi, E.: Weighted differential topographic function: a refinement of topographic function. In: ESANN, pp. 13–18 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Vatanen, T., Nieminen, I.T., Honkela, T., Raiko, T., Lagus, K. (2013). Controlling Self-Organization and Handling Missing Values in SOM and GTM. In: Estévez, P., Príncipe, J., Zegers, P. (eds) Advances in Self-Organizing Maps. Advances in Intelligent Systems and Computing, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35230-0_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-35230-0_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35229-4
Online ISBN: 978-3-642-35230-0
eBook Packages: EngineeringEngineering (R0)