Controlling Self-Organization and Handling Missing Values in SOM and GTM | SpringerLink
Skip to main content

Controlling Self-Organization and Handling Missing Values in SOM and GTM

  • Conference paper
Advances in Self-Organizing Maps

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 198))

Abstract

In this paper, we study fundamental properties of the Self-Organizing Map (SOM) and the Generative Topographic Mapping (GTM), ramifications of the initialization of the algorithms and properties of the algorithms in presence of missing data. We show that the commonly used principal component analysis (PCA) initialization of the GTM does not guarantee good learning results with complex, high-dimensional data. We propose initializing the GTM with SOM and demonstrate usefulness of this improvement using the ISOLET data set. We also propose a revision to the batch SOM algorithm called the Imputation SOM and show that the new algorithm is more robust in presence of missing data. We compare the performance of the algorithms in the missing value imputation task. We also announce a revised version of the SOM Toolbox for Matlab with added GTM functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. NETLAB: algorithms for pattern recognition. Springer-Verlag New York, Inc., New York (2002)

    Google Scholar 

  2. Bishop, C.M., Svensén, M., Williams, C.K.I.: GTM: The generative topographic mapping. Neural Computation 10 (1998)

    Google Scholar 

  3. Bishop, C.M., Williams, C.K.I.: Developments of the Generative Topographic Mapping. Neurocomputing 21, 203–224 (1998)

    Article  MATH  Google Scholar 

  4. Cottrell, M., Letrémy, P.: Missing values: processing with the Kohonen algorithm. In: Applied Stochastic Models and Data Analysis, pp. 489–496 (2005)

    Google Scholar 

  5. Dittenbach, M., Merkl, D., Rauber, A.: The growing hierarchical self-organizing map. In: IJCNN, pp. 15–19 (2000)

    Google Scholar 

  6. Fanty, M.A., Cole, R.A.: Spoken letter recognition. In: NIPS, pp. 220–226 (1990)

    Google Scholar 

  7. Fessant, F., Midenet, S.: Self-organising map for data imputation and correction in surveys. Neural Computing and Applications 10(4), 300–310 (2002)

    Article  MATH  Google Scholar 

  8. Fort, J.C., Letrémy, P., Cottrell, M.: Advantages and drawbacks of the Batch Kohonen algorithm. In: ESANN, pp. 223–230 (2002)

    Google Scholar 

  9. Frank, A., Asuncion, A.: UCI machine learning repository (2010), http://archive.ics.uci.edu/ml

  10. Fritzke, B.: Grorwing cell structures–a self-organizing network for unsupervised and supervised learning. Neural Networks 7(9), 1441–1460 (1994)

    Article  Google Scholar 

  11. Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Prentice Hall (2008)

    Google Scholar 

  12. Ilin, A., Raiko, T.: Practical approaches to principal component analysis in the presence of missing values. Journal of Machine Learning Research 99, 1957–2000 (2010)

    MathSciNet  Google Scholar 

  13. Kaski, S., Lagus, K.: Comparing Self-organizing Maps. In: Vorbrüggen, J.C., von Seelen, W., Sendhoff, B. (eds.) ICANN 1996. LNCS, vol. 1112, pp. 809–814. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  14. Kiviluoto, K., Oja, E.: S-Map: A Network with a Simple Self-Organization Algorithm for Generative Topographic Mappings. In: Advances in Neural Information Processing Systems, pp. 549–555. Morgan Kaufmann Publishers (1998)

    Google Scholar 

  15. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological Cybernetics 43, 59–69 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer-Verlag New York, Inc., Secaucus (2001)

    Book  MATH  Google Scholar 

  17. Koikkalainen, P., Oja, E.: Self-organizing hierarchical feature maps. In: IJCNN 1990, pp. 279–285 (1990)

    Google Scholar 

  18. Merlin, P., Sorjamaa, A., Maillet, B., Lendasse, A.: X-SOM and L-SOM: a double classification approach for missing value imputation. Neurocomputing 73(7-9), 1103–1108 (2010)

    Article  Google Scholar 

  19. Rustum, R., Adeloye, A.J.: Replacing outliers and missing values from activated sludge data using Kohonen Self-Organizing Map. Journal of Environmental Engineering 133(9), 909–916 (2007)

    Article  Google Scholar 

  20. Sorjamaa, A.: Methodologies for Time Series Prediction and Missing Value Imputation. Ph.D. thesis, Aalto University School of Science and Technology (2010)

    Google Scholar 

  21. Vatanen, T.: Missing Value Imputation Using Subspace Methods with Applications on Survey Data. Master’s thesis, Aalto University, Espoo, Finland (2012)

    Google Scholar 

  22. Venna, J., Kaski, S.: Local multidimensional scaling. Neural Networks 19(6-7), 889–899 (2006)

    Article  MATH  Google Scholar 

  23. Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: Self-organizing map in matlab: the SOM Toolbox. In: The Matlab DSP Conference, pp. 35–40 (2000)

    Google Scholar 

  24. Villmann, T., Der, R., Herrmann, J.M., Martinetz, T.: Topology preservation in self-organizing feature maps: exact definition and measurement. IEEE Trans. Neural Netw. Learning Syst. 8(2), 256–266 (1997)

    Google Scholar 

  25. Wang, S.: Application of Self-Organising Maps for data mining with incomplete data sets. Neural Computing and Applications 12, 42–48 (2003)

    Article  Google Scholar 

  26. Zhang, L., Merényi, E.: Weighted differential topographic function: a refinement of topographic function. In: ESANN, pp. 13–18 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommi Vatanen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vatanen, T., Nieminen, I.T., Honkela, T., Raiko, T., Lagus, K. (2013). Controlling Self-Organization and Handling Missing Values in SOM and GTM. In: Estévez, P., Príncipe, J., Zegers, P. (eds) Advances in Self-Organizing Maps. Advances in Intelligent Systems and Computing, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35230-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35230-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35229-4

  • Online ISBN: 978-3-642-35230-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics