Abstract
Using genus 2 curves with simple but not absolutely simple Jacobians one can obtain pairing-based cryptosystems more efficient than for a generic genus 2 curve. We describe a new framework to construct pairing-friendly abelian surfaces, which are simple but not absolutely simple. The main contribution is the generalization of the notion of complete, complete with variable discriminant, and sparse families of elliptic curves introduced by Freeman, Scott and Teske [13]. We give algorithms to construct families of abelian surfaces of each type, which generalize the Brezing-Weng method. To realize these abelian surfaces as Jacobians we use curves of the form y 2 = x 5 + ax 3 + bx or y 2 = x 6 + ax 3 + b, and apply the method of Freeman and Satoh [12]. As applications we give variable-discriminant families with best ρ-values. We also give some families with record ρ-value.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barreto, P.S.L.M., Naehrig, M.: Pairing-Friendly Elliptic Curves of Prime Order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)
Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001); full version: SIAM J. Comput. 32(3), 586–615 (2003)
Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001); full version: J. Cryptol. 17, 297–319 (2004)
Brezing, F., Weng, A.: Elliptic curves suitable for pairing based cryptography. Des. Codes Cryptogr. 37, 133–141 (2005)
Cardona, G., Quer, J.: Field of moduli and field of definition for curves of genus 2, http://arxiv.org/abs/math/0207015
Cardona, G., Quer, J.: Curves of genus 2 with group of automorphisms isomorphic to D 8 or D 12. Trans. Amer. Math. Soc. 359, 2831–2849 (2007)
Dryło, R.: A New Method for Constructing Pairing-Friendly Abelian Surfaces. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 298–311. Springer, Heidelberg (2010)
Dryło, R.: On Constructing Families of Pairing-Friendly Elliptic Curves with Variable Discriminant. In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS, vol. 7107, pp. 310–319. Springer, Heidelberg (2011)
Freeman, D.: Constructing Pairing-Friendly Elliptic Curves with Embedding Degree 10. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 452–465. Springer, Heidelberg (2006)
Freeman, D.: Constructing Pairing-Friendly Genus 2 Curves with Ordinary Jacobians. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 152–176. Springer, Heidelberg (2007)
Freeman, D.: A Generalized Brezing-Weng Algorithm for Constructing Pairing-Friendly Ordinary Abelian Varieties. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 146–163. Springer, Heidelberg (2008)
Freeman, D., Satoh, T.: Constructing pairing-friendly hyperelliptic curves using Weil restriction. J. Number Theory 131, 959–983 (2011)
Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves. J. Cryptol. 23, 224–280 (2010)
Freeman, D., Stevenhagen, P., Streng, M.: Abelian Varieties with Prescribed Embedding Degree. In: van der Poorten, A.J., Stein, A. (eds.) ANTS-VIII 2008. LNCS, vol. 5011, pp. 60–73. Springer, Heidelberg (2008)
Furukawa, E., Kawazoe, M., Takahashi, T.: Counting Points for Hyperelliptic Curves of Type y 2 = x 5 + ax Over Finite Prime Fields. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 26–41. Springer, Heidelberg (2004)
Galbraith, S.D.: Supersingular Curves in Cryptography. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 495–513. Springer, Heidelberg (2001)
Galbraith, S., McKee, J., Valença, P.: Ordinary abelian varieties having small embedding degree. Finite Fields Appl. 13, 800–814 (2007)
Gaudry, P., Schost, É.: On the Invariants of the Quotients of the Jacobian of a Curve of Genus 2. In: Bozta, S., Sphparlinski, I. (eds.) AAECC- 14. LNCS, vol. 2227, pp. 373–386. Springer, Heidelberg (2001)
Guillevic, A., Vergnaud, D.: Genus 2 Hyperelliptic Curve Families with Explicit Jacobian Order Evaluation and Pairing-Friendly Constructions. To appear in Pairing-Based Cryptography – Pairing 2012. LNCS (2012)
Howe, E., Zhu, H.: On the existence of absolutely simple abelian varieties of a given dimension over an arbitrary field. J. Number Theory 92, 139–163 (2002)
Igusa, J.: Arithmetic Variety of Moduli for Genus Two. Ann. Math. 72, 612–649 (1960)
Joux, A.: A One Round Protocol for Tripartite Diffie–Hellman. In: Bosma, W. (ed.) ANTS-IV. LNCS, vol. 1838, pp. 385–393. Springer, Heidelberg (2000); full version: J. Cryptol. 17, 263–276 (2004)
Kachisa, E.J.: Generating More Kawazoe-Takahashi Genus 2 Pairing-Friendly Hyperelliptic Curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 312–326. Springer, Heidelberg (2010)
Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing Brezing-Weng Pairing-Friendly Elliptic Curves Using Elements in the Cyclotomic Field. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer, Heidelberg (2008)
Kawazoe, M., Takahashi, T.: Pairing-Friendly Hyperelliptic Curves with Ordinary Jacobians of Type y 2 = x 5 + ax. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 164–177. Springer, Heidelberg (2008)
Lang, S.: Algebraic Number Theory. Graduate Texts in Mathematics, vol. 110. Springer, Berlin (1994)
Miyaji, A., Nakabayashi, M., Takano, S.: New explicit conditions of elliptic curve traces for FR-reduction. IEICE Trans. Fundam. E84-A(5), 1234–1243 (2001)
Milne, J.S.: Abelian varieties. In: Cornell, G., Silverman, J. (eds.) Arithmetic Geometry, pp. 103–150. Springer, New York (1986)
Murphy, A., Fitzpatrick, N.: Elliptic curves for pairing applications, http://eprint.iacr.org/2005/302
Maisner, D., Nart, E.: Abelian surfaces over finite fields as Jacobians. Experimental Mathematics 11, 321–337 (2002); With an appendix by Everett W. Howe
Menezes, A., Okamoto, T., Vanstone, S.: Reducing elliptic curve logarithms to logarithms in a finite field. IEEE Trans. Inf. Theory 39, 1639–1646 (1993)
Mestre, J.F.: Construction de courbes de genre 2 à partir de leurs modules. In: Effective Methods in Algebraic Geometry (Castiglioncello, 1990), pp. 313–334. Birkhäuser, Boston (1991)
Rubin, K., Silverberg, A.: Using abelian varieties to improve pairing-based cryptography. J. Cryptol. 22, 330–364 (2009)
Scott, M., Barreto, P.S.L.M.: Generating more MNT elliptic curves. Des. Codes Cryptogr. 38, 209–217 (2006)
Shaska, T., Voelklein, H.: Elliptic subfields and automorphisms of genus 2 function fields. In: Algebra, Arithmetic and Geometry with Applications (West Lafayette, IN, 2000), 703–723. Springer, Heidelberg (2004)
Silverman, J.: The Arithmetic of Elliptic Curves. Springer, Berlin (1986)
Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairings. In: 2000 Symposium on Cryptography and Information Security – SCIS 2000, Okinawa, Japan (2000)
Sutherland, A.: Computing Hilbert class polynomials with the Chinese remainder theorem. Math. Comp. 80, 501–538 (2011)
Tate, J.: Classes d’isogénie des variétés abéliennes sur un corps fini (d’aprés T. Honda.) Séminarie Bourbaki 1968/69, exposé 352. Lect. Notes in Math, vol. 179, pp. 95–110. Springer (1971)
Tate, J.: Endomorphisms of abelian varieties over finite fields. Inventiones Mathematicae 2 (1966)
Waterhouse, W.C.: Abelian varieties over finite fields. Ann. Sci. École Norm. Sup. 2, 521–560 (1969)
Waterhouse, W.C., Milne, J.S.: Abelian varieties over finite fields. Proc. Symp. Pure Math. 20, 53–64 (1971)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dryło, R. (2012). Constructing Pairing-Friendly Genus 2 Curves with Split Jacobian. In: Galbraith, S., Nandi, M. (eds) Progress in Cryptology - INDOCRYPT 2012. INDOCRYPT 2012. Lecture Notes in Computer Science, vol 7668. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34931-7_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-34931-7_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34930-0
Online ISBN: 978-3-642-34931-7
eBook Packages: Computer ScienceComputer Science (R0)