Abstract
We present and study a new model for energy-aware and profit-oriented scheduling on a single processor. The processor features dynamic speed scaling as well as suspension to a sleep mode. Jobs arrive over time, are preemptable, and have different sizes, values, and deadlines. On the arrival of a new job, the scheduler may either accept or reject the job. Accepted jobs need a certain energy investment to be finished in time, while rejected jobs cause costs equal to their values. Here, power consumption at speed s is given by P(s) = s α + β and the energy investment is power integrated over time. Additionally, the scheduler may decide to suspend the processor to a sleep mode in which no energy is consumed, though awaking entails fixed transition costs γ. The objective is to minimize the total value of rejected jobs plus the total energy.
Our model combines aspects from advanced energy conservation techniques (namely speed scaling and sleep states) and profit-oriented scheduling models. We show that rejection-oblivious schedulers (whose rejection decisions are not based on former decisions) have - in contrast to the model without sleep states - an unbounded competitive ratio w.r.t. the processor parameters α and β. It turns out that the worst-case performance of such schedulers depends linearly on the jobs’ value densities (the ratio between a job’s value and its work). We give an algorithm whose competitiveness nearly matches this lower bound. If the maximum value density is not too large, the competitiveness becomes α α + 2eα. Also, we show that it suffices to restrict the value density of low-value jobs only. Using a technique from [13] we transfer our results to processors with a fixed maximum speed.
This work was partially supported by the German Research Foundation (DFG) within the Collaborative Research Center “On-The-Fly Computing” (SFB 901) and by the Graduate School on Applied Network Science (GSANS).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
Albers, S.: Algorithms for Dynamic Speed Scaling. In: Proc. of the 28th International Symp. On Theoretical Aspects of Computer Science (STACS), Schloss Dagstuhl, pp. 1–11 (2011)
Albers, S.: Energy-Effcient Algorithms. Comm. of the ACM 53(5), 86–96 (2010)
Albers, S., Antoniadis, A.: Race to Idle: New Algorithms for Speed Scaling with a Sleep State. In: Proceedings of the 23rd Symposium on Discrete Algorithms, SODA (2012)
Albers, S., Antoniadis, A., Greiner, G.: On Multi-Processor Speed Scaling with Migration. In: Proceedings of the 23rd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 279–288. ACM (2011)
Bansal, N., Chan, H.-L., Pruhs, K., Katz, D.: Improved Bounds for Speed Scaling in Devices Obeying the Cube-Root Rule. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 144–155. Springer, Heidelberg (2009)
Bansal, N., Chan, H.-L., Lam, T.-W., Lee, L.-K.: Scheduling for Speed Bounded Processors. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 409–420. Springer, Heidelberg (2008)
Bansal, N., Kimbrel, T., Pruhs, K.: Speed Scaling to Manage Energy and Temperature. Journal of the ACM 54(1), 1–39 (2007)
Baptiste, P.: Scheduling Unit Tasks to Minimize the Number of Idle Periods: A Polynomial Time Algorithm for Online Dynamic Power Management. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithm (SODA), pp. 364–367. ACM (2006)
Baptiste, P., Chrobak, M., Dürr, C.: Polynomial Time Algorithms for Minimum Energy Scheduling. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 136–150. Springer, Heidelberg (2007)
Barroso, L.A., Hölzle, U.: The Case for Energy-Proportional Computing. Computer 40(12), 33–37 (2007)
Baruah, S., Koren, G., Mishra, B., Raghunathan, A., Rosier, L., Shasha, D.: Online Scheduling in the Presence of Overload. In: Proc. of the 32nd Symp. on Foundations of Computer Science (FOCS), pp. 100–110 (1991)
Chan, H.-L., Chan, W.-T., Lam, T.-W., Lee, L.-K., Mak, K.-S., Wong, P.W.H.: Energy Efficient Online Deadline Scheduling. In: Proceedings ofthe 18th Symposium on Discrete Algorithms (SODA), pp. 795–804. SIAM (2007)
Chan, H.-L., Lam, T.-W., Li, R.: Tradeoff between Energy and Throughput for Online Deadline Scheduling. In: Jansen, K., Solis-Oba, R. (eds.) WAOA 2010. LNCS, vol. 6534, pp. 59–70. Springer, Heidelberg (2011)
Cord-Landwehr, A., Kling, P., Mallmann-Trenn, F.: Slow Down & Sleep for Profit in Online Deadline Scheduling. arXiv:1209.2848 [cs.DS] (2012)
Han, X., Lam, T.-W., Lee, L.-K., To, I.K.K., Wong, P.W.H.: Deadline Scheduling and Power Management for Speed Bounded Processors. Theoretical Computer Science 411(42), 3587–3600 (2010)
Irani, S., Shukla, S., Gupta, R.: Algorithms for Power Savings. ACM Transactions on Algorithm 3(4) (2007)
Pruhs, K., Stein, C.: How to Schedule When You Have to Buy Your Energy. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX 2010, LNCS, vol. 6302, pp. 352–365. Springer, Heidelberg (2010)
Yao, F.F., Demers, A.J., Shenker, S.: A Scheduling Model for Reduced CPU Energy. In: Proceedings of the 36th Annual Symposium on Foundations of Computer Science (FOCS), pp. 374–382 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kling, P., Cord-Landwehr, A., Mallmann-Trenn, F. (2012). Slow Down and Sleep for Profit in Online Deadline Scheduling. In: Even, G., Rawitz, D. (eds) Design and Analysis of Algorithms. MedAlg 2012. Lecture Notes in Computer Science, vol 7659. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34862-4_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-34862-4_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34861-7
Online ISBN: 978-3-642-34862-4
eBook Packages: Computer ScienceComputer Science (R0)