Statistical Learning for Resting-State fMRI: Successes and Challenges | SpringerLink
Skip to main content

Statistical Learning for Resting-State fMRI: Successes and Challenges

  • Conference paper
Machine Learning and Interpretation in Neuroimaging

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7263))

Abstract

In the absence of external stimuli, fluctuations in cerebral activity can be used to reveal intrinsic structures. Well-conditioned probabilistic models of this so-called resting-state activity are needed to support neuroscientific hypotheses. Exploring two specific descriptions of resting-state fMRI, namely spatial analysis and connectivity graphs, we discuss the progress brought by statistical learning techniques, but also the neuroscientific picture that they paint, and possible modeling pitfalls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5262
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 6578
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beckmann, C.F., Smith, S.M.: Probabilistic independent component analysis for functional magnetic resonance imaging. Trans. Med. Im. 23, 137 (2004)

    Article  Google Scholar 

  2. Bento, J., Montanari, A.: Which graphical models are difficult to learn? In: Adv. NIPS, p. 1303 (2009)

    Google Scholar 

  3. Bialonski, S., Horstmann, M., Lehnertz, K.: From brain to earth and climate systems: Small-world interaction networks or not? Chaos 20, 013134 (2010)

    Article  MathSciNet  Google Scholar 

  4. Biswal, B., Zerrin Yetkin, F., Haughton, V., Hyde, J.: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 53719 (1995)

    Article  Google Scholar 

  5. Biswal, B., et al.: Toward discovery science of human brain function. Proc. Ntl. Acad. Sci. 107, 4734 (2010)

    Article  Google Scholar 

  6. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186 (2009)

    Article  Google Scholar 

  7. Calhoun, V.D., Adali, T., Pearlson, G.D., Pekar, J.J.: A method for making group inferences from fMRI data using independent component analysis. Hum. Brain Mapp. 14, 140 (2001)

    Article  Google Scholar 

  8. Cole, D., Smith, S., Beckmann, C.: Advances and pitfalls in the analysis and interpretation of resting-state fMRI data. Frontiers in Systems Neuroscience 4 (2010)

    Google Scholar 

  9. Damoiseaux, J.S., et al.: Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. 103, 13848 (2006)

    Article  Google Scholar 

  10. Daubechies, I., et al.: Independent component analysis for brain fMRI does not select for independence. Proc. Natl. Acad. Sci. 106, 10415 (2009)

    Article  Google Scholar 

  11. He, Y., et al.: Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS One 4, e5226 (2009)

    Article  Google Scholar 

  12. Jenatton, R., Obozinski, G., Bach, F.: Structured sparse principal component analysis. In: Proc. AISTATS (2010)

    Google Scholar 

  13. Kiviniemi, V., et al.: Functional segmentation of the brain cortex using high model order group PICA. Hum. Brain Map. (2009)

    Google Scholar 

  14. McIntosh, A.: Moving between functional and effective connectivity. In: Sporns, O. (ed.) Analysis and Function of Large-Scale Brain Networks, p. 15. Society for Neuroscience (2010)

    Google Scholar 

  15. Smith, S., et al.: Network modelling methods for fMRI. Neuroimage 54, 875 (2011)

    Article  Google Scholar 

  16. Varoquaux, G., Gramfort, A., Poline, J.B., Thirion, B.: Brain covariance selection: better individual functional connectivity models using population prior. In: Adv. NIPS (2010)

    Google Scholar 

  17. Varoquaux, G., Keller, M., Poline, J., Ciuciu, P., Thirion, B.: ICA-based sparse features recovery from fMRI datasets. In: ISBI, p. 1177 (2010)

    Google Scholar 

  18. Varoquaux, G., et al.: A group model for stable multi-subject ICA on fMRI datasets. NeuroImage 51, 288 (2010)

    Article  Google Scholar 

  19. Varoquaux, G., Gramfort, A., Pedregosa, F., Michel, V., Thirion, B.: Multi-subject Dictionary Learning to Segment an Atlas of Brain Spontaneous Activity. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 562–573. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  20. Varoquaux, G., Gramfort, A., Poline, J.B., Thirion, B.: Markov models for fMRI correlation structure: is brain functional connectivity small world, or decomposable into networks? Journal of Physiology - Paris, epub ahead of print (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Varoquaux, G., Thirion, B. (2012). Statistical Learning for Resting-State fMRI: Successes and Challenges. In: Langs, G., Rish, I., Grosse-Wentrup, M., Murphy, B. (eds) Machine Learning and Interpretation in Neuroimaging. Lecture Notes in Computer Science(), vol 7263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34713-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34713-9_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34712-2

  • Online ISBN: 978-3-642-34713-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics