Abstract
Motivated by the outstanding performance of primates in pattern recognition tasks, the main purpose of this research is to exploit the behavioral and neuro-biological findings from primates’ visual perception mechanism for categorization applications. Dynamic Bio-Inspired Categorization system (DyBIC) is implemented utilizing nonlinear first order differential equations and its training phase can be accomplished online. The order of the set of differential equations is exclusively a function of the number of categories to be discriminated and the length of the feature vectors doesn’t affect system complexity. Besides, the proposed method carries out recognition in a multi-scale mode which is compatible with some of the well-known cognitive and neural phenomena like categorical perception and hierarchical discrimination. The performance of DyBIC is tested on a handmade typical classification example.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Panchen, A.L.: Classification, Evolution, and the Nature of Biology. Cambridge University Press, Cambridge (1992)
Heisele, B., Serre, T., Pontil, M., Vetter, T., Poggio, T.: Categorization by Learning and Combining Object Parts. In: NIPS, Vancouver (2001)
Schöner, G.: Dynamical Systems Approaches to Cognition. In: Cambridge Handbook of Computational Cognitive Modeling. Cambridge University Press, Cambridge (2007)
Gelder, T.V.: The Dynamical Hypothesis in Cognitive Science. Behav. Brain Sci. 21, 615–665 (1998)
Georges, A., Kotliar, G., Krauth, W., Rozenberg, M.J.: Dynamical Mean-Field Theory of Strongly Correlated Fermion Systems and the Limit of Infinite Dimensions. Reviews of Modern Physics 68, 13–125 (1996)
Fitzgerald, D.J., Sincich, L.C., Sharpee, T.O.: Minimal Models of Multidimensional Computations. PLoS Computational Biology 7 (2011)
Mazzoni, P., Andersen, R.A., Jordon, M.I.: A More Biologically Plausible Learning Rule for Neural Networks. Proc. Natl. Acad. Sci. USA, Neurobiology 88, 4433–4437 (1991)
Moon, T.K.: The Expectation-Maximization Algorithm. IEEE Signal Processing Magazine 13, 47–60 (1996)
Goldstone, R.L., Hendrickson, A.T.: Categorical Perception. Interdisciplinary Reviews: Cognitive Science 1, 65–78 (2010)
Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science, 4th edn. McGraw-Hill, New York (2000)
Dayan, P., Abbott, L.F.: Theoretical Neuroscience. The MIT Press, Cambridge (2001)
Moldakarimov, S., Roolenhagen, J.E., Olson, C.R., Chow, C.C.: Competitive Dynamics in Cortical Responses to Visual Stimuli. J. Neurophysiol. 94, 3388–3396 (2005)
Gilbert, C., Wiesel, T.N.: Receptive Field Dynamics in Adult Primary Visual Cortex. Nature 356, 150–152 (1992)
Maass, W.: Networks of Spiking Neurons: The Third Generation of Neural Network Models. Neural Network 10, 1659–1671 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jamalabadi, H., Nasrollahi, H., Ahmadabadi, M.N., Araabi, B.N., Vahabie, A., Abolghasemi, M. (2012). A Dynamic Bio-inspired Model of Categorization. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7664. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34481-7_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-34481-7_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34480-0
Online ISBN: 978-3-642-34481-7
eBook Packages: Computer ScienceComputer Science (R0)