Global Minimizer of Large Scale Stochastic Rosenbrock Function: Canonical Duality Approach | SpringerLink
Skip to main content

Global Minimizer of Large Scale Stochastic Rosenbrock Function: Canonical Duality Approach

  • Conference paper
Neural Information Processing (ICONIP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7666))

Included in the following conference series:

  • 4330 Accesses

Abstract

Canonical duality theory for solving the well-known benchmark test problem of stochastic Rosenbrock function is explored by two canonical transformations. Global optimality criterion is analytically obtained, which shows that the stochastic disturbance of these parameters could be eliminated by a proper canonical dual transformation. Numerical simulations illustrate the canonical duality theory is potentially powerful for solving this benchmark test problem and many other challenging problems in global optimization and complex network systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rosenbrock, H.H.: An automatic method for finding the greatest or least value of a function. The Computer Journal 3, 175–184 (1960)

    Article  MathSciNet  Google Scholar 

  2. Yang, X.S., Deb, S.: Engineering optimization by cuckoo search. Int. J. Math. Modelling Num. Optimisation 1, 330–343 (2010)

    Article  MATH  Google Scholar 

  3. Gao, D.Y.: Duality, triality and complementary extremum principles in nonconvex parametric variational problems with applications. IMA J. Appl. Math. 61, 199–235 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gao, D.Y.: Pure complementary energy principle and triality theory in finite elasticity. Mech. Res. Commun. 26(1), 31–37 (1999)

    Article  MATH  Google Scholar 

  5. Gao, D.Y.: General analytic solutions and complementary variational principles for large deformation nonsmooth mechanics. Meccanica 34, 169–198 (1999)

    MathSciNet  MATH  Google Scholar 

  6. Gao, D.Y.: Duality Principles in Nonconvex Systems: Theory, Methods and Applications. Kluwer Academic, Dordrecht (2000)

    MATH  Google Scholar 

  7. Gao, D.Y.: Canonical dual transformation method and generalized triality theory in nonsmooth global optimization. J. Glob. Optim. 17, 127–160 (2000)

    Article  MATH  Google Scholar 

  8. Gao, D.Y.: Perfect duality theory and complete solutions to a class of global optimization problems. Optim. 52, 467–493 (2003)

    Article  MATH  Google Scholar 

  9. Gao, D.Y.: Perfect duality theory and complete solutions to a class of global optimization problems. Optimization 52, 467–493 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao, D.Y.: Nonconvex semi-linear problems and canonical dual solutions. In: Gao, D.Y., Ogden, R.W. (eds.) Advances in Mechanics and Mathematics, vol. II, pp. 261–312. Kluwer Academic, Dordrecht (2003)

    Chapter  Google Scholar 

  11. Gao, D.Y.: Canonical duality theory and solutions to constrained nonconvex quadratic programming. J. Glob. Optim. 29, 377–399 (2004)

    Article  MATH  Google Scholar 

  12. Gao, D.Y.: Solutions and optimality to box constrained nonconvex minimization problems. J. Ind. Manag. Optim. 3(2), 293–304 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gao, D.Y.: Canonical duality theory: theory, method, and applications in global optimization. Comput. Chem. 33, 1964–1972 (2009)

    Article  Google Scholar 

  14. Gao, D.Y., Wu, C.Z.: On the triality theory in global optimization. J. Global Optimization (2010)

    Google Scholar 

  15. Gao, D.Y., Zhang, J.P.: Canonical Duality Theory for Solving Minimization Problem of Rosenbrock Function. arxiv.org/abs/1108.1241v1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, C., Gao, D.Y. (2012). Global Minimizer of Large Scale Stochastic Rosenbrock Function: Canonical Duality Approach. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34478-7_82

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34478-7_82

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34477-0

  • Online ISBN: 978-3-642-34478-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics