An Intelligent Hyper-Heuristic Framework for CHeSC 2011 | SpringerLink
Skip to main content

An Intelligent Hyper-Heuristic Framework for CHeSC 2011

  • Conference paper
Learning and Intelligent Optimization (LION 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7219))

Included in the following conference series:

Abstract

The present study proposes a new selection hyper-heuristic providing several adaptive features to cope with the requirements of managing different heuristic sets. The approach suggested provides an intelligent way of selecting heuristics, determines effective heuristic pairs and adapts the parameters of certain heuristics online. In addition, an adaptive list-based threshold accepting mechanism has been developed. It enables deciding whether to accept or not the solutions generated by the selected heuristics. The resulting approach won the first Cross Domain Heuristic Search Challenge against 19 high-level algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ozcan, E., Misir, M., Ochoa, G., Burke, E.: A reinforcement learning - great-deluge hyper-heuristic for examination timetabling. International Journal of Applied Metaheuristic Computing 1(1), 39–59 (2010)

    Article  Google Scholar 

  2. Burke, E., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu, R.: Hyper-heuristics: A survey of the state of the art. Journal of the Operational Research Society (to appear)

    Google Scholar 

  3. Ochoa, G., Hyde, M., Curtois, T., Vazquez-Rodriguez, J.A., Walker, J., Gendreau, M., Kendall, G., McCollum, B., Parkes, A.J., Petrovic, S., Burke, E.K.: HyFlex: A Benchmark Framework for Cross-Domain Heuristic Search. In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 136–147. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Misir, M., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: A new hyper-heuristic implementation in HyFlex: a study on generality. In: Fowler, J., Kendall, G., McCollum, B. (eds.) The 5th Multidisciplinary International Scheduling Conference: Theory & Applications (MISTA 2011), Phoenix/Arizona, USA, pp. 374–393 (2011)

    Google Scholar 

  5. Misir, M., Smet, P., Verbeeck, K., Vanden Berghe, G.: Security personnel routing and rostering: a hyper-heuristic approach. In: Gunalay, Y., Kadipasaoglu, S. (eds.) Proceedings of the 3rd International Conference on Applied Operational Research (ICAOR 2011), Istanbul, Turkey. LNMS, vol. 3, pp. 193–205 (2011)

    Google Scholar 

  6. Misir, M., Wauters, T., Verbeeck, K., Vanden Berghe, G.: A Hyper-heuristic with Learning Automata for the Traveling Tournament Problem. In: Metaheuristics: Intelligent Decision Making, the 8th Metaheuristics International Conference - Post Conference Volume. Springer (to appear)

    Google Scholar 

  7. Misir, M., Vancroonenburg, W., Vanden Berghe, G.: A selection hyper-heuristic for scheduling deliveries of ready-mixed concrete. In: Proceedings of the 9th Metaheuristic International Conference (MIC 2011), Udine, Italy (2011)

    Google Scholar 

  8. Misir, M., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: Design and analysis of an evolutionary selection hyper-heuristic framework. Tech. report, KAHO Sint-Lieven (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mısır, M., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G. (2012). An Intelligent Hyper-Heuristic Framework for CHeSC 2011. In: Hamadi, Y., Schoenauer, M. (eds) Learning and Intelligent Optimization. LION 2012. Lecture Notes in Computer Science, vol 7219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34413-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34413-8_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34412-1

  • Online ISBN: 978-3-642-34413-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics