A Temporal Logic with Mean-Payoff Constraints | SpringerLink
Skip to main content

A Temporal Logic with Mean-Payoff Constraints

  • Conference paper
Formal Methods and Software Engineering (ICFEM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7635))

Included in the following conference series:

Abstract

In the quantitative verification and synthesis of reactive systems, the states or transitions of a system are associated with payoffs, and a quantitative property of a behavior of the system is often characterized by the mean payoff for the behavior. This paper proposes an extension of LTL thatdescribes mean-payoff constraints. For each step of a behavior of a system, the payment depends on a system transition and a temporal property of the behavior. A mean-payoff constraint is a threshold condition for the limit supremum or limit infimum of the mean payoffs of a behavior. This extension allows us to describe specifications reflecting qualitative and quantitative requirements on long-run average of costs and the frequencies of satisfaction of temporal properties. Moreover, we develop an algorithm for the emptiness problems of multi-dimensional payoff automata with Büchi acceptance conditions and multi-threshold mean-payoff acceptance conditions. The emptiness problems are decided by solving linear constraint satisfaction problems, and the decision problems of our logic are reduced to the emptiness problems. Consequently, we obtain exponential-time algorithms for the model- and satisfiability-checking of the logic. Some optimization problems of the logic can also be reduced to linear programming problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Acacia+, http://lit2.ulb.ac.be/acaciaplus/

  2. Alur, R., Degorre, A., Maler, O., Weiss, G.: On Omega-Languages Defined by Mean-Payoff Conditions. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 333–347. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Andova, S., Hermanns, H., Katoen, J.P.: Discrete-Time Rewards Model-Checked. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 88–104. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying Continuous Time Markov Chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  5. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-checking algorithms for continuous-time markov chains. IEEE Transactions on Software Engineering 29(6), 524–541 (2003)

    Article  Google Scholar 

  6. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: On the Logical Characterisation of Performability Properties. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 780–792. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better Quality in Synthesis through Quantitative Objectives. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Boker, U., Chatterjee, K., Henzinger, T., Kupferman, O.: Temporal specifications with accumulative values. In: LICS 2011, pp. 43–52 (2011)

    Google Scholar 

  9. Brázdil, T., Forejt, V., Kretínský, J., Kucera, A.: The satisfiability problem for probabilistic ctl. In: LICS 2008, pp. 391–402 (2008)

    Google Scholar 

  10. Černý, P., Chatterjee, K., Henzinger, T.A., Radhakrishna, A., Singh, R.: Quantitative Synthesis for Concurrent Programs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 243–259. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Chatterjee, K., Doyen, L., Edelsbrunner, H., Henzinger, T.A., Rannou, P.: Mean-Payoff Automaton Expressions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 269–283. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative Languages. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385–400. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Chatterjee, K., Henzinger, T.A., Jobstmann, B., Singh, R.: Measuring and Synthesizing Systems in Probabilistic Environments. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 380–395. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Chatterjee, K., Majumdar, R., Henzinger, T.A.: Markov Decision Processes with Multiple Objectives. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 325–336. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Droste, M., Gastin, P.: Weighted automata and weighted logics. Theoretical Computer Science 380(1-2), 69–86 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6(5), 512–535 (1994)

    Article  MATH  Google Scholar 

  17. Kupferman, O., Lustig, Y.: Lattice Automata. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 199–213. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL 1989, pp. 179–190 (1989)

    Google Scholar 

  19. Pnueli, A.: The temporal logic of programs. In: FOCS 1977, pp. 46–57 (1977)

    Google Scholar 

  20. PRISM, http://www.prismmodelchecker.org/

  21. SPIN, http://spinroot.com/spin/

  22. Tomita, T., Hagihara, S., Yonezaki, N.: A probabilistic temporal logic with frequency operators and its model checking. In: INFINITY 2011. EPTCS, vol. 73, pp. 79–93 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tomita, T., Hiura, S., Hagihara, S., Yonezaki, N. (2012). A Temporal Logic with Mean-Payoff Constraints. In: Aoki, T., Taguchi, K. (eds) Formal Methods and Software Engineering. ICFEM 2012. Lecture Notes in Computer Science, vol 7635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34281-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34281-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34280-6

  • Online ISBN: 978-3-642-34281-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics