Convexifying Monotone Polygons while Maintaining Internal Visibility | SpringerLink
Skip to main content

Convexifying Monotone Polygons while Maintaining Internal Visibility

  • Chapter
Computational Geometry (EGC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7579))

Included in the following conference series:

  • 1369 Accesses

Abstract

Let P be a simple polygon on the plane. Two vertices of P are visible if the open line segment joining them is contained in the interior of P. In this paper we study the following questions posed in [8,9]: (1) Is it true that every non-convex simple polygon has a vertex that can be continuously moved such that during the process no vertex-vertex visibility is lost and some vertex-vertex visibility is gained? (2) Can every simple polygon be convexified by continuously moving only one vertex at a time without losing any internal vertex-vertex visibility during the process?

We provide a counterexample to (1). We note that our counterexample uses a monotone polygon. We also show that question (2) has a positive answer for monotone polygons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5262
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 6578
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ábrego, B.M., Cetina, M., Leaños, J., Salazar, G.: Visibility-preserving convexifications using single-vertex moves. Information Processing Letters 112(5), 161–163 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aichholzer, O., Aloupis, G., Demaine, E.D., Demaine, M.L., Dujmović, V., Hurtado, F., Lubiw, A., Rote, G., Schulz, A., Souvaine, D.L., Winslow, A.: Convexifying Polygons Without Losing Visibilities. In: Proceedings of the 23rd Canadian Conference on Computational Geometry (CCCG 2011), pp. 229–234 (2011)

    Google Scholar 

  3. Aichholzer, O., Cortes, C., Demaine, E.D., Dujmović, V., Erickson, J., Meijer, H., Overmars, M., Palop, B., Ramaswami, S., Toussaint, G.: Flipturning polygons. Discrete and Computational Geometry 28, 231–253 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aloupis, G., Ballinger, B., Bose, P., Damian, M., Demaine, E.D., Demaine, M.L., Flatland, R.Y., Hurtado, F., Langerman, S., O’Rourke, J., Taslakian, P., Toussaint, G.T.: Vertex Pops and Popturns. In: Proceedings of the 19th Canadian Conference on Computational Geometry (CCCG 2007), pp. 137–140 (2007)

    Google Scholar 

  5. Biedl, T.C., Demaine, E.D., Lazard, S., Robbins, S.M., Soss, M.A.: Convexifying Monotone Polygons. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 415–424. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  6. Demaine, E.D., Gassend, B., O’Rourke, J., Toussaint, G.T.: All polygons flip finitely... right? In: Surveys on Discrete and Computational Geometry. Contemp. Math., vol. 453, pp. 231–255 (2008)

    Google Scholar 

  7. Demaine, E.D., Langerman, S.: Personal communication, Montreal (2008)

    Google Scholar 

  8. Demaine, E.D., O’Rourke, J.: Open Problems from CCCG 2008. In: Proceedings of the 21st Canadian Conference on Computational Geometry (CCCG 2009), pp. 75–78 (2009)

    Google Scholar 

  9. Devadoss, S.L., Shah, R., Shao, X., Winston, E.: Visibility graphs and deformations of associahedra, arXiv: 0903.2848 (March 2009)

    Google Scholar 

  10. Erdős, P.: Problem 3763. Amer. Math. Monthly 42, 627, 463–470 (1935)

    Google Scholar 

  11. Grünbaum, B.: How to convexify a polygon. Geocombinatorics 5, 24–30 (1995)

    MathSciNet  MATH  Google Scholar 

  12. de Sz.-Nagy, B.: Solution of problem 3763. Amer. Math. Monthly 49, 176–177 (1939)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aichholzer, O., Cetina, M., Fabila-Monroy, R., Leaños, J., Salazar, G., Urrutia, J. (2012). Convexifying Monotone Polygons while Maintaining Internal Visibility. In: Márquez, A., Ramos, P., Urrutia, J. (eds) Computational Geometry. EGC 2011. Lecture Notes in Computer Science, vol 7579. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34191-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34191-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34190-8

  • Online ISBN: 978-3-642-34191-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics