Abstract
Let P be a simple polygon on the plane. Two vertices of P are visible if the open line segment joining them is contained in the interior of P. In this paper we study the following questions posed in [8,9]: (1) Is it true that every non-convex simple polygon has a vertex that can be continuously moved such that during the process no vertex-vertex visibility is lost and some vertex-vertex visibility is gained? (2) Can every simple polygon be convexified by continuously moving only one vertex at a time without losing any internal vertex-vertex visibility during the process?
We provide a counterexample to (1). We note that our counterexample uses a monotone polygon. We also show that question (2) has a positive answer for monotone polygons.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ábrego, B.M., Cetina, M., Leaños, J., Salazar, G.: Visibility-preserving convexifications using single-vertex moves. Information Processing Letters 112(5), 161–163 (2012)
Aichholzer, O., Aloupis, G., Demaine, E.D., Demaine, M.L., Dujmović, V., Hurtado, F., Lubiw, A., Rote, G., Schulz, A., Souvaine, D.L., Winslow, A.: Convexifying Polygons Without Losing Visibilities. In: Proceedings of the 23rd Canadian Conference on Computational Geometry (CCCG 2011), pp. 229–234 (2011)
Aichholzer, O., Cortes, C., Demaine, E.D., Dujmović, V., Erickson, J., Meijer, H., Overmars, M., Palop, B., Ramaswami, S., Toussaint, G.: Flipturning polygons. Discrete and Computational Geometry 28, 231–253 (2002)
Aloupis, G., Ballinger, B., Bose, P., Damian, M., Demaine, E.D., Demaine, M.L., Flatland, R.Y., Hurtado, F., Langerman, S., O’Rourke, J., Taslakian, P., Toussaint, G.T.: Vertex Pops and Popturns. In: Proceedings of the 19th Canadian Conference on Computational Geometry (CCCG 2007), pp. 137–140 (2007)
Biedl, T.C., Demaine, E.D., Lazard, S., Robbins, S.M., Soss, M.A.: Convexifying Monotone Polygons. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 415–424. Springer, Heidelberg (1999)
Demaine, E.D., Gassend, B., O’Rourke, J., Toussaint, G.T.: All polygons flip finitely... right? In: Surveys on Discrete and Computational Geometry. Contemp. Math., vol. 453, pp. 231–255 (2008)
Demaine, E.D., Langerman, S.: Personal communication, Montreal (2008)
Demaine, E.D., O’Rourke, J.: Open Problems from CCCG 2008. In: Proceedings of the 21st Canadian Conference on Computational Geometry (CCCG 2009), pp. 75–78 (2009)
Devadoss, S.L., Shah, R., Shao, X., Winston, E.: Visibility graphs and deformations of associahedra, arXiv: 0903.2848 (March 2009)
Erdős, P.: Problem 3763. Amer. Math. Monthly 42, 627, 463–470 (1935)
Grünbaum, B.: How to convexify a polygon. Geocombinatorics 5, 24–30 (1995)
de Sz.-Nagy, B.: Solution of problem 3763. Amer. Math. Monthly 49, 176–177 (1939)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Aichholzer, O., Cetina, M., Fabila-Monroy, R., Leaños, J., Salazar, G., Urrutia, J. (2012). Convexifying Monotone Polygons while Maintaining Internal Visibility. In: Márquez, A., Ramos, P., Urrutia, J. (eds) Computational Geometry. EGC 2011. Lecture Notes in Computer Science, vol 7579. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34191-5_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-34191-5_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34190-8
Online ISBN: 978-3-642-34191-5
eBook Packages: Computer ScienceComputer Science (R0)