Abstract
In this survey we present some semi-Lagrangian schemes for the approximation of weak solutions of first and second order differential problems related to image processing and computer vision. The general framework is given by the theory of viscosity solutions and, in some cases, of calculus of variations. The schemes proposed here have interesting stability properties for evolutive problems since they allow for large time steps, can deal with degenerate problems and are more accurate if compared to standard finite difference/element methods of the same order. Several examples on classical problems will illustrate these properties.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alvarez, L., Lions, P.L., Morel, J.M.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29, 845–866 (1992)
Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and fundamental equations of image processing. Arch. Ration. Mech. 123, 199–257 (1993)
Amiaz, T., Kiryati, N.: Piecewise-smooth dense optical flow via level sets. Int. J. Comput. Vis. 68(2), 111–124 (2006)
Barles, G.: Solutions de Viscositè des Equations d’Hamilton–Jacobi. Springer, New York (1998)
Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12, 75–104 (1996)
Brenner S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)
Brent, R.: Algorithms for Minimization Without Derivatives. Pentice–Hall, Englewood Cliffs (1973)
Breuss, M., Cristiani, E., Durou, J.D., Falcone, M., Vogel, O.: Numerical algorithms for perspective shape from shading. Kybernetika 46, 207–225 (2010)
Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High Accuracy Optical Flow Estimation Based on a Theory for Warping. Lecture Notes in Computer Science, pp. 25–36. Springer, Berlin (2004)
Brox, T., Bruhn, A., Weickert, J.: Variational segmentation with level sets. In: Computer Vision-ECCV, Graz, pp. 471–483 (2006)
Camilli, F., Falcone, M.: An approximation scheme for the maximal solution of the shape-from-shading model. In: Proceedings ICIP 96, vol. I, pp. 49–52. IEEE, Piscataway (1996)
Carlini, E., Ferretti, R.: A semi-Lagrangian approximation for the AMSS model of image processing. submitted to Applied Numerical Mathematics (in press)
Carlini, E., Ferretti, R., Russo, G.: A weighted essentially non oscillatory, large time-step scheme for Hamilton Jacobi equations. SIAM J. Sci. Comput. 27(3), 1071–1091 (2005)
Carlini, E., Falcone, M., Ferretti, R.: Convergence of a large time-step scheme for mean curvature motion. Interface Free Bound. 12, 409–441 (2010)
Catté, F., Dibos, F., Koepfler, G.: A morphological scheme for mean curvature motion and applications to anisotropic diffusion and motion of level sets. SIAM J. Numer. Anal. 32, 1895–1909 (1995)
Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)
Chan, T., Sandberg, B., Vese, L.: Active contours without edges for vector-valued images. J. Vis. Commun. Image R. 11(2), 130–141 (2000)
Chen, Y.G., Giga, Y., Goto, S.: Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation. J. Diff. Geom. 33, 749–786 (1991)
Courant, R., Isaacson, E., Rees, M.: On the solution of nonlinear hyperbolic differential equations by finite differences. Commun. Pure Appl. Math. 5, 243–255 (1952)
Courteille, F., Crouzil, A., Durou, J.D., Gurdjos, P.: Towards shape from shading under realistic photographic conditions, Int. C. Patt. Recog.- ICPR 2004, Cambridge, vol. 2, pp. 277–280 (2004)
Crandall, M.G., Lions, P.L.: Two approximations of solutions of Hamilton–Jacobi equations. Math. Comput. 43, 1–19 (1984)
Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992)
Cremers, D., Soatto, S.: Motion competition: a variational framework for piecewise parametric motion segmentation. Int. J. Comput. Vis. 63, 249–265 (2005)
Cristiani, E., Falcone, M.: Fast semi-Lagrangian schemes for the eikonal equation and applications. SIAM J. Numer. Anal. 45(5), 1979–2011 (2007)
Cristiani, E., Falcone, M., Seghini, A.: Numerical solution of the shape-from-shading problem. In: Proceedings of Science POS (CSTNA2005) 008, 1–17, Electronic Journal site http://pos.sissa.it/
De Giorgi, E.: New functionals in calculus of variations, nonsmooth optimization and related topics. In: Proceedings of the Fourth Course of the International School of Mathematics, Erice (1988)
Durou, J.D., Falcone, M., Sagona, M.: Numerical methods for shape from shading: a new survey with benchmarks. Comput. Vis. Image Underst. Elsevier 109, 22–43 (2008)
Evans, L.C.: Partial Differential Equations. AMS, Providence (2010)
Evans, L.C., Spruck, J.: Motion of level sets by mean curvature. Int. J. Diff. Geom. 33, 635–681 (1991)
Falcone, M.: The minimum time problem and its applications to front propagation. In: Motion by Mean Curvature and Related Topics. De Gruyter Verlag, Berlino (1994)
Falcone, M., Ferretti, R.: Convergence analysis for a class of high-order semi-Lagrangian advection schemes. SIAM J. Numer. Anal. 35(3), 909–940 (1998)
Falcone, M., Ferretti, R.: Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations. SIAM, in preparation
Falcone, M., Sagona, M., Seghini, A.: A global algorithm for the Shape-from-Shading problem with black shadows. Numerical Mathematics and Advanced Applications ENUMATH 2001, pp. 503–512. Springer, Milano (2003)
Guichard, F., Morel, J.M.: Image Analysis and P.D.E.s. IPAM GBM Tutorial, March 27–April 6 (2001)
Horn, B.K.P., Brooks M.J. (eds.): Shape from Shading. MIT, Cambridge (1989)
Horn, B.K.P., Schunck, B.: Determinig optical flow. Artif. Intell. 17, 185–203 (1981)
Lions, P.L., Rouy, E., Tourin, A.: A viscosity solution approach to shape from shading. Numer. Math. 64, 323–353 (1993)
Morel, J.M., Solimini, S.: Segmentation of images by variational methods: a constructive approach. Rev. Mat. Univ. Compl. de Madr. 1, 169–182 (1988)
Mumford, D., Shah, J.: Boundary detection by minimizing functional. In: Proceedings of the CVPR, pp. 22–26. IEEE, Silver Spring (1985)
Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. XLII, 577–685 (1989)
Oberman, A.M.: A convergent monotone difference scheme for motion of level sets by mean curvature. Numer. Math. 99, 365–379 (2004)
Osher, S.J., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sciences, vol. 153. Springer, New York (2003)
Osher, S.J., Sethian, J.A.: Front propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulation. J. Comput. Phys. 79, 12–49 (1988)
Prados, E., Faugeras, O.: Perspective Shape-from-Shading and viscosity solutions. In: Proceedings of ICCV’03, pp. 826–831. IEEE, Los Alamitos (2003)
Sethian, J.A.: Level Set Methods and Fast Marching Methods Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge Monograph on Applied and Computational Mathematics. Cambridge University Press, Cambridge (1999)
Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations, 2nd edn. SIAM, Philadelphia (2004)
Univerität Kalsruhe. http://i21www.ira.uka.de/image_sequences/
Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50, 271–293 (2002)
Zhao, H., Chan, T., Merriman, B., Osher, S.J.: A variational level set approach to multiphase motion. J. Comput. Phys. 127, 179–195 (1996)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Carlini, E., Falcone, M., Festa, A. (2013). A Brief Survey on Semi-Lagrangian Schemes for Image Processing. In: Breuß, M., Bruckstein, A., Maragos, P. (eds) Innovations for Shape Analysis. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34141-0_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-34141-0_9
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34140-3
Online ISBN: 978-3-642-34141-0
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)