Symmetric-Key Encryption Scheme with Multi-ciphertext Non-malleability | SpringerLink
Skip to main content

Symmetric-Key Encryption Scheme with Multi-ciphertext Non-malleability

  • Conference paper
Advances in Information and Computer Security (IWSEC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7631))

Included in the following conference series:

Abstract

A standard notion of non-malleability is that an adversary cannot forge a ciphertext c′ from a single valid ciphertext c for which a plaintext m′ of c′ is meaningfully related to a plaintext m of c. The multi-ciphertext non-malleability is a stronger notion; an adversary is allowed to obtain multiple ciphertexts c 1,c 2,... in order to forge c′. We provide an efficient symmetric-key encryption scheme with an information-theoretic version of the multi-ciphertext non-malleability in this paper by using ℓ-wise almost independent permutations of Kaplan, Naor, and Reingold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5262
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 6578
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brodsky, A., Hoory, S.: Simple permutations mix even better. Random Struct. Algorithms 32(3), 274–289 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput. 30(2), 391–437 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gowers, W.T.: An almost m-wise independent random permutation of the cube. Combinatorics, Probability & Computing 5, 119–130 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hanaoka, G.: Some Information Theoretic Arguments for Encryption: Non-malleability and Chosen-Ciphertext Security (Invited Talk). In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 223–231. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Hanaoka, G., Shikata, J., Hanaoka, Y., Imai, H.: Unconditionally secure anonymous encryption and group authentication. Comput. J. 49(3), 310–321 (2006)

    Article  Google Scholar 

  6. Hoory, S., Magen, A., Myers, S., Rackoff, C.: Simple permutations mix well. Theor. Comput. Sci. 348(2-3), 251–261 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kaplan, E., Naor, M., Reingold, O.: Derandomized constructions of k-wise (almost) independent permutations. Algorithmica 55(1), 113–133 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kawachi, A., Portmann, C., Tanaka, K.: Characterization of the Relations between Information-Theoretic Non-malleability, Secrecy, and Authenticity. In: Fehr, S. (ed.) ICITS 2011. LNCS, vol. 6673, pp. 6–24. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. McAven, L., Safavi-Naini, R., Yung, M.: Unconditionally Secure Encryption Under Strong Attacks. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 427–439. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Pass, R., Shelat, A., Vaikuntanathan, V.: Relations Among Notions of Non-malleability for Encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 519–535. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Rees, E.G.: Notes on geometry. Springer (1983)

    Google Scholar 

  12. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4) (2008)

    Google Scholar 

  13. Russell, A., Wang, H.: How to fool an unbounded adversary with a short key. IEEE Transactions on Information Theory 52(3), 1130–1140 (2006)

    Article  MathSciNet  Google Scholar 

  14. Saks, M.E., Srinivasan, A., Zhou, S., Zuckerman, D.: Low discrepancy sets yield approximate min-wise independent permutation families. Inf. Process. Lett. 73(1-2), 29–32 (2000)

    Article  MathSciNet  Google Scholar 

  15. Shannon, C.: Communication theory of secrecy systems. Bell System Technical Journal 28(4), 656–715 (1949)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kawachi, A., Takebe, H., Tanaka, K. (2012). Symmetric-Key Encryption Scheme with Multi-ciphertext Non-malleability. In: Hanaoka, G., Yamauchi, T. (eds) Advances in Information and Computer Security. IWSEC 2012. Lecture Notes in Computer Science, vol 7631. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34117-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34117-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34116-8

  • Online ISBN: 978-3-642-34117-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics