A Remark on Distance Regular Graph with k = 10,a 1 = 1 | SpringerLink
Skip to main content

A Remark on Distance Regular Graph with k = 10,a 1 = 1

  • Conference paper
Information Computing and Applications (ICICA 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 307))

Included in the following conference series:

  • 1163 Accesses

Abstract

Distance-regular graph is a kind of highly regular graph. It is studied actively in recent years. The classification is one of the important contents in the study of Distance-regular graph. In this thesis we discuss the distance-regular graph with k = 10,a 1 = 1 by mean of intersection diagrams, circuit chasing techniques and properties of distance-regular graphs. We prove the following conclusion: Let Γ be a distance-regular graph of k = 10,a 1 = 1, if c r + 2 = 4 and a r + 2 = 5, then c d  = 10. It is useful to a classification of distance-regular graph of k = 10,a 1 = 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hiraki, A., Nomura, K., Suzuki, H.: Distence-regular graphs of valency 6 and a 1=1. J. Alge Combin. 11, 101–134 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Yamazaki, N.: Distence-regular graphs with Γ(x) ≅ 3.K a + 1. Europ. J. Combin. 16, 525–536 (1995)

    Article  MATH  Google Scholar 

  3. Bannai, E., Ito, T.: On distance-regular grapths with fixed valency, II. Graphs and Combin. 4, 219–228 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bannai, E., Ito, T.: On distance-regular grapths with fixed valency, III. Journal of Algebra 107, 43–52 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bannai, E., Ito, T.: On distance-regular grapths with fixed valency, IV. European J. Combin. 10, 137–148 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hiraki, A.: Circuit chasing technigue for a distance-regular grapth with c 2r + 1. Kyushu. J. Math. 49, 197–291 (2010)

    Article  MathSciNet  Google Scholar 

  7. Bannai, E., Ito, T.: On distance-regular graphs with fixed valency. Graphs and Combin. 3, 95–109 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-regular graphs. Springer, Heidelberg (2010)

    Google Scholar 

  9. Hiraki, A., Suzuki, H.: On distance-regular grapths of b 1 = c d − 1. Math. Japonica 37, 751–756 (2012)

    MathSciNet  Google Scholar 

  10. Suzuki, H.: Local and antipodal structures of distance-regular grapths. Springer, Heidelberg (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ma, J., Han, B. (2012). A Remark on Distance Regular Graph with k = 10,a 1 = 1. In: Liu, C., Wang, L., Yang, A. (eds) Information Computing and Applications. ICICA 2012. Communications in Computer and Information Science, vol 307. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34038-3_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34038-3_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34037-6

  • Online ISBN: 978-3-642-34038-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics