Twitter Sentiment Analysis Based on Writing Style | SpringerLink
Skip to main content

Twitter Sentiment Analysis Based on Writing Style

  • Conference paper
Advances in Natural Language Processing (JapTAL 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7614))

Included in the following conference series:

Abstract

This paper proposes a new method of sentiment analysis for Twitter. Tweets contain various expressions; e.g., use of emoticons. The usage of these expressions links to the user’s identity and individual characters. Handling these characteristics is useful for the sentiment analysis. We focus on writing styles of each user. In this paper, we define three types of writing style; formal and two informal expressions. First, our method classifies each tweet into the three types. Then, it generates classifiers for each writing style. We apply our method to a positive / negative classification task of tweets. In the experiment, the accuracy of our method increased by approximately 3 points as compared with some baseline methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bar-Haim, R., Dinur, E., Feldman, R., Fresko, M., Goldstein, G.: Identifying and following expert investors in stock microblogs. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2011), pp. 1310–1319 (2011)

    Google Scholar 

  2. Brody, S., Diakopoulos, N.: Cooooooooooooooollllllllllllll!!!!!!!!!!!!!! usingword lengthening to detect sentiment in microblogs. In: Proceedings of EMNLP 2011 (2011)

    Google Scholar 

  3. Burger, J.D., Henderson, J., Kim, G., Zarrella, G.: Discriminating gender on twitter. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2011), pp. 1301–1309 (2011)

    Google Scholar 

  4. Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision. Technical report, Stanford University (2009)

    Google Scholar 

  5. Jiang, L., Yu, M., Zhou, M., Liu, X., Zhao, T.: Target-dependent twitter sentiment classification. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics (2011)

    Google Scholar 

  6. Koppel, M., Argamon, S., Shimoni, A.R.: Automatically categorizing written texts by author gender. Literary and Linguistic Computing 17, 401–412 (2003)

    Article  Google Scholar 

  7. Pang, B., Lee, L.: Opinion mining and sentiment analysis, vol. 2. Foundations and Trends in Information Retrieval (2008)

    Google Scholar 

  8. Rao, D., Yarowsky, D., Shreevats, A., Gupta, M.: Classifying latent user attributes in twitter. In: Proceedings of the 2nd International Workshop on Search and Mining User-Generated Contents, pp. 37–44 (2010)

    Google Scholar 

  9. Riloff, E., Wiebe, J.: Learning extraction patterns for subjective expressions. In: Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing, EMNLP 2003 (2003)

    Google Scholar 

  10. Takamura, H., Inui, T., Okumura, M.: Extracting semantic orientations of words using spin model. In: Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL 2005), pp. 133–140 (2005)

    Google Scholar 

  11. Turney, P.D.: Thumbs up? or thumbs down? semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp. 417–424 (2002)

    Google Scholar 

  12. Wiebe, J., Riloff, E.: Creating Subjective and Objective Sentence Classifiers from Unannotated Texts. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp. 486–497. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maeda, H., Shimada, K., Endo, T. (2012). Twitter Sentiment Analysis Based on Writing Style. In: Isahara, H., Kanzaki, K. (eds) Advances in Natural Language Processing. JapTAL 2012. Lecture Notes in Computer Science(), vol 7614. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33983-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33983-7_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33982-0

  • Online ISBN: 978-3-642-33983-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics