Abstract
The Dendritic Cell Algorithm (DCA) is an immune inspired algorithm based on the behavior of dendritic cells. The performance of DCA depends on the selected features and their categorization to their specific signal types, during pre-processing. For feature selection, DCA applies the Principal Component Analysis (PCA). Nevertheless, PCA does not guarantee that the selected first principal components will be the most adequate for classification. Furthermore, the DCA categorization process is based on the PCA attributes’ ranking in terms on variability. However, this categorization process could not be considered as a coherent assignment procedure. Thus, the aim of this paper is to develop a new DCA feature selection and categorization method based on Rough Set Theory (RST). In this model, the selection and the categorization processes are based on the RST CORE and REDUCT concepts. Results show that applying RST, instead of PCA, to DCA is more convenient for data pre-processing yielding much better performance in terms of accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Greensmith, J., Aickelin, U., Cayzer, S.: Introducing Dendritic Cells as a Novel Immune-Inspired Algorithm for Anomaly Detection. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 153–167. Springer, Heidelberg (2005)
Gu, F., Greensmith, J., Oates, R., Aickelin, U.: Pca 4 dca: The application of principal component analysis to the dendritic cell algorithm. In: Proceedings of the 9th Annual Workshop on Computational Intelligence (2009)
Jolliffe, I.T.: Principal component analysis. Springer, New York (2002)
Cantú-Paz, E.: Feature Subset Selection, Class Separability, and Genetic Algorithms. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 959–970. Springer, Heidelberg (2004)
Gu, F.: Theoretical and Empirical Extensions of the Dendritic Cell Algorithm. PhD thesis, University of Nottingham (2011)
Garthwaite, P., Jolliffe, I., Jones, B.: Statistical Inference (Hardcover). Oxford University Press (2003)
Bermejo, S., Cabestany, J.: Oriented principal component analysis for large margin classifiers. Neural Netw. 14, 1447–1461 (2001)
Pawlak, Z.: Rough sets. International Journal of Computer and Information Science 11, 341–356 (1982)
Swiniarski, R.W., Skowron, A.: Rough set methods in feature selection and recognition. Pattern Recognition Letters 24(6), 833–849 (2003)
Han, J., Hu, X., Lin, T.Y.: Feature Subset Selection Based on Relative Dependency between Attributes. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 176–185. Springer, Heidelberg (2004)
Zhong, N., Dong, J., Ohsuga, S.: Using rough sets with heuristics for feature selection. J. Intell. Inf. Syst. 16(3), 199–214 (2001)
Lotze, M.T., Thomson, A.W.: Dendritic Cells: Biology and Clinical Applications, 2nd edn., no. 794 (2001)
Greensmith, J., Aickelin, U.: The Deterministic Dendritic Cell Algorithm. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 291–302. Springer, Heidelberg (2008)
Gu, F., Greensmith, J., Aickelin, U.: Integrating real-time analysis with the dendritic cell algorithm through segmentation. In: GECCO, pp. 1203–1210 (2009)
Chelly, Z., Elouedi, Z.: FDCM: A Fuzzy Dendritic Cell Method. In: Hart, E., McEwan, C., Timmis, J., Hone, A. (eds.) ICARIS 2010. LNCS, vol. 6209, pp. 102–115. Springer, Heidelberg (2010)
Chelly, Z., Elouedi, Z.: Further Exploration of the Fuzzy Dendritic Cell Method. In: Liò, P., Nicosia, G., Stibor, T. (eds.) ICARIS 2011. LNCS, vol. 6825, pp. 419–432. Springer, Heidelberg (2011)
Chelly, Z., Smiti, A., Elouedi, Z.: COID-FDCM: The Fuzzy Maintained Dendritic Cell Classification Method. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 233–241. Springer, Heidelberg (2012)
Pawlak, Z., Grzymala-Busse, J., Slowinski, R., Ziarko, W.: Rough sets. Commun. ACM 38, 88–95 (1995)
Massart, D.L., Walczak, B.: Rough sets theory. Chemometrics and Intelligent Laboratory Systems 47, 1–16 (1999)
John, G., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection problem. In: ICML, pp. 121–129 (1994)
Asuncion, A., Newman, D.J.: UCI machine learning repository (2007), http://mlearn.ics.uci.edu/mlrepository.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chelly, Z., Elouedi, Z. (2012). RC-DCA: A New Feature Selection and Signal Categorization Technique for the Dendritic Cell Algorithm Based on Rough Set Theory. In: Coello Coello, C.A., Greensmith, J., Krasnogor, N., Liò, P., Nicosia, G., Pavone, M. (eds) Artificial Immune Systems. ICARIS 2012. Lecture Notes in Computer Science, vol 7597. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33757-4_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-33757-4_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33756-7
Online ISBN: 978-3-642-33757-4
eBook Packages: Computer ScienceComputer Science (R0)