RC-DCA: A New Feature Selection and Signal Categorization Technique for the Dendritic Cell Algorithm Based on Rough Set Theory | SpringerLink
Skip to main content

RC-DCA: A New Feature Selection and Signal Categorization Technique for the Dendritic Cell Algorithm Based on Rough Set Theory

  • Conference paper
Artificial Immune Systems (ICARIS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7597))

Included in the following conference series:

Abstract

The Dendritic Cell Algorithm (DCA) is an immune inspired algorithm based on the behavior of dendritic cells. The performance of DCA depends on the selected features and their categorization to their specific signal types, during pre-processing. For feature selection, DCA applies the Principal Component Analysis (PCA). Nevertheless, PCA does not guarantee that the selected first principal components will be the most adequate for classification. Furthermore, the DCA categorization process is based on the PCA attributes’ ranking in terms on variability. However, this categorization process could not be considered as a coherent assignment procedure. Thus, the aim of this paper is to develop a new DCA feature selection and categorization method based on Rough Set Theory (RST). In this model, the selection and the categorization processes are based on the RST CORE and REDUCT concepts. Results show that applying RST, instead of PCA, to DCA is more convenient for data pre-processing yielding much better performance in terms of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Greensmith, J., Aickelin, U., Cayzer, S.: Introducing Dendritic Cells as a Novel Immune-Inspired Algorithm for Anomaly Detection. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 153–167. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Gu, F., Greensmith, J., Oates, R., Aickelin, U.: Pca 4 dca: The application of principal component analysis to the dendritic cell algorithm. In: Proceedings of the 9th Annual Workshop on Computational Intelligence (2009)

    Google Scholar 

  3. Jolliffe, I.T.: Principal component analysis. Springer, New York (2002)

    MATH  Google Scholar 

  4. Cantú-Paz, E.: Feature Subset Selection, Class Separability, and Genetic Algorithms. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 959–970. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Gu, F.: Theoretical and Empirical Extensions of the Dendritic Cell Algorithm. PhD thesis, University of Nottingham (2011)

    Google Scholar 

  6. Garthwaite, P., Jolliffe, I., Jones, B.: Statistical Inference (Hardcover). Oxford University Press (2003)

    Google Scholar 

  7. Bermejo, S., Cabestany, J.: Oriented principal component analysis for large margin classifiers. Neural Netw. 14, 1447–1461 (2001)

    Article  Google Scholar 

  8. Pawlak, Z.: Rough sets. International Journal of Computer and Information Science 11, 341–356 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Swiniarski, R.W., Skowron, A.: Rough set methods in feature selection and recognition. Pattern Recognition Letters 24(6), 833–849 (2003)

    Article  MATH  Google Scholar 

  10. Han, J., Hu, X., Lin, T.Y.: Feature Subset Selection Based on Relative Dependency between Attributes. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 176–185. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Zhong, N., Dong, J., Ohsuga, S.: Using rough sets with heuristics for feature selection. J. Intell. Inf. Syst. 16(3), 199–214 (2001)

    Article  MATH  Google Scholar 

  12. Lotze, M.T., Thomson, A.W.: Dendritic Cells: Biology and Clinical Applications, 2nd edn., no. 794 (2001)

    Google Scholar 

  13. Greensmith, J., Aickelin, U.: The Deterministic Dendritic Cell Algorithm. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 291–302. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Gu, F., Greensmith, J., Aickelin, U.: Integrating real-time analysis with the dendritic cell algorithm through segmentation. In: GECCO, pp. 1203–1210 (2009)

    Google Scholar 

  15. Chelly, Z., Elouedi, Z.: FDCM: A Fuzzy Dendritic Cell Method. In: Hart, E., McEwan, C., Timmis, J., Hone, A. (eds.) ICARIS 2010. LNCS, vol. 6209, pp. 102–115. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Chelly, Z., Elouedi, Z.: Further Exploration of the Fuzzy Dendritic Cell Method. In: Liò, P., Nicosia, G., Stibor, T. (eds.) ICARIS 2011. LNCS, vol. 6825, pp. 419–432. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Chelly, Z., Smiti, A., Elouedi, Z.: COID-FDCM: The Fuzzy Maintained Dendritic Cell Classification Method. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 233–241. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Pawlak, Z., Grzymala-Busse, J., Slowinski, R., Ziarko, W.: Rough sets. Commun. ACM 38, 88–95 (1995)

    Article  Google Scholar 

  19. Massart, D.L., Walczak, B.: Rough sets theory. Chemometrics and Intelligent Laboratory Systems 47, 1–16 (1999)

    Article  Google Scholar 

  20. John, G., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection problem. In: ICML, pp. 121–129 (1994)

    Google Scholar 

  21. Asuncion, A., Newman, D.J.: UCI machine learning repository (2007), http://mlearn.ics.uci.edu/mlrepository.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chelly, Z., Elouedi, Z. (2012). RC-DCA: A New Feature Selection and Signal Categorization Technique for the Dendritic Cell Algorithm Based on Rough Set Theory. In: Coello Coello, C.A., Greensmith, J., Krasnogor, N., Liò, P., Nicosia, G., Pavone, M. (eds) Artificial Immune Systems. ICARIS 2012. Lecture Notes in Computer Science, vol 7597. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33757-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33757-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33756-7

  • Online ISBN: 978-3-642-33757-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics