Abstract
In this paper an approach based on hybrid, evolutionary-neural computations to the IFS inverse problem is presented. Having a bitmap image we look for an IFS having the attractor approximating of a given image with a good accuracy. A method using IFSes consisting of a variable number of mappings is proposed. A genom has hierarchical structure. A number of different operators acting on various levels of the genome are introduced. The algorithm described in [7] is aided by multi-layer neural networks. Such improved algorithm is less time consuming.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barnsley, M.F.: Fractals Everywhere. Academic Press (1988)
Barnsley, M.F., Demko, S.G.: Iterated function schemes and the global construction of fractals. Proc. R. Soc. A 399, 243–275 (1985)
Barnsley, M.F., Sloan, A.D.: A better way to compress images. Byte 13, 215–233 (1988)
Bielecki, A., Strug, B.: An Evolutionary Algorithm for Solving the Inverse Problem for Iterated Function Systems for a Two Dimensional Image. In: Kurzyński, M., Puchała, E., Woźniak, M. (eds.) Computer Recognition Systems. AISC, vol. 30, pp. 347–355. Springer, Heidelberg (2005)
Bielecki, A., Strug, B.: A Viral Replication Mechanism in Evolutionary Algorithms. In: Proc. of ICAISC 2006, pp.175–180. IEEE Computational Intelligence Society (2006)
Bielecki, A., Strug, B.: Evolutionary Approach to Finding Itarated Function Systems for a Two Dimensional Image. In: Computational Imaging and Vision, pp. 512–520. Springer, Berlin (2006)
Bielecki, A., Strug, B.: Finding an Iterated Function Systems based representation for complex visual structures using an evolutionary algorithm. Machine Graphics and Vision 16, 171–189 (2007)
Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)
Mandelbrot, B.: The Fractal Geometry of Nature. Freeman, New York (1982)
Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Philips, J.C.: GPU computing. Proc. IEEE 96, 879–899 (2008)
Strug, B., Bielecki, A., Bielecka, M.: Evolutionary Viral-type Algorithm for the Inverse Problem for Iterated Function Systems. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 579–588. Springer, Heidelberg (2008)
Tadeusiewicz, R.: Neural Networks. Akademicka Oficyna Wydawnicza, Warszawa (1993) (in Polish)
Taubenberger, J.K., Reid, A.H., Fanning, T.G.: Capturing a killer flu virus. Scientific American 292, 62–71 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bielecka, M., Bielecki, A. (2012). An Evolutionary-Neural Algorithm for Solving Inverse IFS Problem for Images in Two-Dimensional Space. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds) Computer Vision and Graphics. ICCVG 2012. Lecture Notes in Computer Science, vol 7594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33564-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-33564-8_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33563-1
Online ISBN: 978-3-642-33564-8
eBook Packages: Computer ScienceComputer Science (R0)