An Evolutionary-Neural Algorithm for Solving Inverse IFS Problem for Images in Two-Dimensional Space | SpringerLink
Skip to main content

An Evolutionary-Neural Algorithm for Solving Inverse IFS Problem for Images in Two-Dimensional Space

  • Conference paper
Computer Vision and Graphics (ICCVG 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7594))

Included in the following conference series:

  • 3629 Accesses

Abstract

In this paper an approach based on hybrid, evolutionary-neural computations to the IFS inverse problem is presented. Having a bitmap image we look for an IFS having the attractor approximating of a given image with a good accuracy. A method using IFSes consisting of a variable number of mappings is proposed. A genom has hierarchical structure. A number of different operators acting on various levels of the genome are introduced. The algorithm described in [7] is aided by multi-layer neural networks. Such improved algorithm is less time consuming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barnsley, M.F.: Fractals Everywhere. Academic Press (1988)

    Google Scholar 

  2. Barnsley, M.F., Demko, S.G.: Iterated function schemes and the global construction of fractals. Proc. R. Soc. A 399, 243–275 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barnsley, M.F., Sloan, A.D.: A better way to compress images. Byte 13, 215–233 (1988)

    Google Scholar 

  4. Bielecki, A., Strug, B.: An Evolutionary Algorithm for Solving the Inverse Problem for Iterated Function Systems for a Two Dimensional Image. In: Kurzyński, M., Puchała, E., Woźniak, M. (eds.) Computer Recognition Systems. AISC, vol. 30, pp. 347–355. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Bielecki, A., Strug, B.: A Viral Replication Mechanism in Evolutionary Algorithms. In: Proc. of ICAISC 2006, pp.175–180. IEEE Computational Intelligence Society (2006)

    Google Scholar 

  6. Bielecki, A., Strug, B.: Evolutionary Approach to Finding Itarated Function Systems for a Two Dimensional Image. In: Computational Imaging and Vision, pp. 512–520. Springer, Berlin (2006)

    Google Scholar 

  7. Bielecki, A., Strug, B.: Finding an Iterated Function Systems based representation for complex visual structures using an evolutionary algorithm. Machine Graphics and Vision 16, 171–189 (2007)

    Google Scholar 

  8. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  9. Mandelbrot, B.: The Fractal Geometry of Nature. Freeman, New York (1982)

    MATH  Google Scholar 

  10. Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Philips, J.C.: GPU computing. Proc. IEEE 96, 879–899 (2008)

    Article  Google Scholar 

  11. Strug, B., Bielecki, A., Bielecka, M.: Evolutionary Viral-type Algorithm for the Inverse Problem for Iterated Function Systems. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 579–588. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Tadeusiewicz, R.: Neural Networks. Akademicka Oficyna Wydawnicza, Warszawa (1993) (in Polish)

    Google Scholar 

  13. Taubenberger, J.K., Reid, A.H., Fanning, T.G.: Capturing a killer flu virus. Scientific American 292, 62–71 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bielecka, M., Bielecki, A. (2012). An Evolutionary-Neural Algorithm for Solving Inverse IFS Problem for Images in Two-Dimensional Space. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds) Computer Vision and Graphics. ICCVG 2012. Lecture Notes in Computer Science, vol 7594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33564-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33564-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33563-1

  • Online ISBN: 978-3-642-33564-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics