Abstract
Petri nets are a simple formalism for modeling concurrent computation. Recently, they have emerged as a promising tool for modeling and analyzing biochemical interaction networks, bridging the gap between purely qualitative and quantitative models. Biological networks can indeed be large and complex, which makes their study difficult and computationally challenging. In this paper, we focus on two structural properties of Petri nets, siphons and traps, that bring us information about the persistence of some molecular species. We present two methods for enumerating all minimal siphons and traps of a Petri net by iterating the resolution of Boolean satisfiability problems executed with either a SAT solver or a CLP(B) program. We compare the performances of these methods with respect to a state-of-the-art algorithm from the Petri net community. On a benchmark with 80 Petri nets from the Petriweb database and 403 Petri nets from curated biological models of the Biomodels database, we show that miniSAT and CLP(B) solvers are overall both faster by two orders of magnitude with respect to the dedicated algorithm. Furthermore, we analyse why these programs perform so well on even very large biological models and show the existence of hard instances in Petri nets with unbounded degrees.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Birtwistle, M.R., Hatakeyama, M., Yumoto, N., Ogunnaike, B.A., Hoek, J.B., Kholodenko, B.N.: Ligand-dependent responses of the ErbB signaling network: experimental and modeling analysis. Molecular Systems Biology 3(144) (September 2007)
Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling and querying biochemical interaction networks. Theoretical Computer Science 325(1), 25–44 (2004)
Chu, F., Xie, X.-L.: Deadlock analysis of petri nets using siphons and mathematical programming. IEEE Transactions on Robotics and Automation 13(6), 793–804 (1997)
Cordone, R., Ferrarini, L., Piroddi, L.: Characterization of minimal and basis siphons with predicate logic and binary programming. In: Proceedings of IEEE International Symposium on Computer-Aided Control System Design, pp. 193–198 (2002)
Cordone, R., Ferrarini, L., Piroddi, L.: Some results on the computation of minimal siphons in petri nets. In: Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, USA (December 2003)
Cordone, R., Ferrarini, L., Piroddi, L.: Enumeration algorithms for minimal siphons in petri nets based on place constraints. IEEE Transactions on Systems, Man and Cybernetics. Part A, Systems and Humans 35(6), 844–854 (2005)
Crawford, J.M., Auton, L.D.: Experimental results on the crossover point in satisfiability problems. In: Proceedings of the 11th National Conference on Artificial Intelligence, pp. 21–27. AAAI Press (1993)
Diaz, D., Codognet, P.: Design and implementation of the GNU Prolog system. Journal of Functional and Logic Programming 6 (October 2001)
Fages, F., Soliman, S., Coolen, R.: CLPGUI: a generic graphical user interface for constraint logic programming. Journal of Constraints, Special Issue on User-Interaction in Constraint Satisfaction 9(4), 241–262 (2004)
Goud, R., van Hee, K.M., Post, R.D.J., van der Werf, J.M.E.M.: Petriweb: A Repository for Petri Nets. In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 411–420. Springer, Heidelberg (2006)
Heiner, M., Gilbert, D., Donaldson, R.: Petri Nets for Systems and Synthetic Biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)
Helfert, S., Estevez, A., Bakker, B., Michels, P., Clayton, C.: Roles of triosephosphate isomerase and aerobic metabolism in trypanosoma brucei. Biochem. J. 357, 117–125 (2001)
Kinuyama, M., Murata, T.: Generating siphons and traps by petri net representation of logic equations. In: Proceedings of 2nd Conference of the Net Theory SIG-IECE, pp. 93–100 (1986)
Kohn, K.W.: Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Molecular Biology of the Cell 10(8), 2703–2734 (1999)
Lautenbach, K.: Linear algebraic calculation of deadlocks and traps. In: Voss, G., Rozenberg (eds.) Concurrency and Nets Advances in Petri Nets, pp. 315–336. Springer, New York (1987)
le Novère, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H., Li, L., Sauro, H., Schilstra, M., Shapiro, B., Snoep, J.L., Hucka, M.: BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acid Research 1(34), D689–D691 (2006)
Minoux, M., Barkaoui, K.: Deadlocks and traps in petri nets as horn-satisfiability solutions and some related polynomially solvable problems. Discrete Applied Mathematics 29, 195–210 (1990)
Mitchell, D., Selman, B., Levesque, H.: Hard and easy distributions of SAT problems. In: Proceedings of the 10th National Conference on Artificial Intelligence, pp. 459–465. AAAI Press (1992)
Murata, T.: Petri nets: properties, analysis and applications. Proceedings of the IEEE 77(4), 541–579 (1989)
Nabli, F.: Finding minimal siphons as a CSP. In: CP 2011: The Seventeenth International Conference on Principles and Practice of Constraint Programming, Doctoral Program, pp. 67–72 (September 2011)
Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall, New Jersey (1981)
Reddy, V.N., Mavrovouniotis, M.L., Liebman, M.N.: Petri net representations in metabolic pathways. In: Hunter, L., Searls, D.B., Shavlik, J.W. (eds.) Proceedings of the 1st International Conference on Intelligent Systems for Molecular Biology (ISMB), pp. 328–336. AAAI Press (1993)
Schoeberl, B., Eichler-Jonsson, C., Gilles, E., Muller, G.: Computational modeling of the dynamics of the map kinase cascade activated by surface and internalized egf receptors. Nature Biotechnology 20(4), 370–375 (2002)
Soliman, S.: Finding minimal P/T-invariants as a CSP. In: Proceedings of the Fourth Workshop on Constraint Based Methods for Bioinformatics, WCB 2008, associated to CPAIOR 2008 (May 2008)
Stryer, L.: Biochemistry. Freeman, New York (1995)
Tanimoto, S., Yamauchi, M., Watanabe, T.: Finding minimal siphons in general petri nets. IEICE Trans. on Fundamentals in Electronics, Communications and Computer Science, 1817–1824 (1996)
Yamauchi, M., Watanabe, T.: Time complexity analysis of the minimal siphon extraction problem of petri nets. IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences, 2558–2565 (1999)
Zevedei-Oancea, I., Schuster, S.: Topological analysis of metabolic networks based on petri net theory. Silico Biology 3(29) (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nabli, F., Fages, F., Martinez, T., Soliman, S. (2012). A Boolean Model for Enumerating Minimal Siphons and Traps in Petri Nets. In: Milano, M. (eds) Principles and Practice of Constraint Programming. CP 2012. Lecture Notes in Computer Science, vol 7514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33558-7_57
Download citation
DOI: https://doi.org/10.1007/978-3-642-33558-7_57
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33557-0
Online ISBN: 978-3-642-33558-7
eBook Packages: Computer ScienceComputer Science (R0)