Abstract
This paper presents a new method for automatic localization and identification of vertebrae in arbitrary field-of-view CT scans. No assumptions are made about which section of the spine is visible or to which extent. Thus, our approach is more general than previous work while being computationally efficient. Our algorithm is based on regression forests and probabilistic graphical models. The discriminative, regression part aims at roughly detecting the visible part of the spine. Accurate localization and identification of individual vertebrae is achieved through a generative model capturing spinal shape and appearance. The system is evaluated quantitatively on 200 CT scans, the largest dataset reported for this purpose. We obtain an overall median localization error of less than 6mm, with an identification rate of 81%.
Chapter PDF
Similar content being viewed by others
References
Peng, Z., Zhong, J., Wee, W., Lee, J.H.: Automated Vertebra Detection and Segmentation from the Whole Spine MR Images. In: IEEE EMBC, pp. 2527–2530 (2005)
Pekar, V., Bystrov, D., Heese, H.S., Dries, S.P.M., Schmidt, S., Grewer, R., den Harder, C.J., Bergmans, R.C., Simonetti, A.W., van Muiswinkel, A.M.: Automated Planning of Scan Geometries in Spine MRI Scans. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 601–608. Springer, Heidelberg (2007)
Schmidt, S., Kappes, J.H., Bergtholdt, M., Pekar, V., Dries, S.P.M., Bystrov, D., Schnörr, C.: Spine Detection and Labeling Using a Parts-Based Graphical Model. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 122–133. Springer, Heidelberg (2007)
Huang, S.H., Lai, S.H., Carol, L.N.: A statistical learning approach to vertebra detection and segmentation from spinal MRI. In: IEEE ISBI, vol. 28, pp. 1595–1605 (2008)
Huang, S.H., Chu, Y.H., Lai, S.H., Novak, C.L.: Learning-based Vertebra Detection and Iterative Normalized-Cut Segmentation for Spinal MRI. IEEE TMI 28(10), 1595–1605 (2009)
Kelm, B., Zhou, K., Sühling, M., Zheng, Y., Wels, M., Comaniciu, D.: Detection of 3D Spinal Geometry Using Iterated Marginal Space Learning. In: Workshop MedCV (2010)
Ma, J., Lu, L., Zhan, Y., Zhou, X., Salganicoff, M., Krishnan, A.: Hierarchical Segmentation and Identification of Thoracic Vertebra Using Learning-Based Edge Detection and Coarse-to-Fine Deformable Model. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 19–27. Springer, Heidelberg (2010)
Oktay, A.B., Akgul, Y.S.: Localization of the Lumbar Discs Using Machine Learning and Exact Probabilistic Inference. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 158–165. Springer, Heidelberg (2011)
Klinder, T., Ostermann, J., Ehm, M., Franz, A., Kneser, R., Lorenz, C.: Automated Model-based Vertebra Detection, Identification, and Segmentation in CT Images. MedIA 13(3), 471–482 (2009)
Bishop, C.: Pattern Recognition and Machine Learning. Springer (2006)
Corso, J.J., Alomari, R.S., Chaudhary, V.: Lumbar Disc Localization and Labeling with a Probabilistic Model on Both Pixel and Object Features. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 202–210. Springer, Heidelberg (2008)
Alomari, R., Corso, J., Chaudhary, V.: Labeling of Lumbar Discs using both Pixel- and Object-level Features with a Two-Level Probabilistic Model. IEEE TMI 30(1), 1–10 (2011)
Criminisi, A., Shotton, J., Konukoglu, E.: Decision Forests: A Unified Framework. Foundations and Trends in Computer Graphics and Vision 7(2-3) (2011)
Criminisi, A., Shotton, J., Robertson, D., Konukoglu, E.: Regression Forests for Efficient Anatomy Detection and Localization in CT Studies. In: Workshop MedCV (2010)
Pauly, O., Glocker, B., Criminisi, A., Mateus, D., Möller, A.M., Nekolla, S., Navab, N.: Fast Multiple Organ Detection and Localization in Whole-Body MR Dixon Sequences. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 239–247. Springer, Heidelberg (2011)
Viola, P., Jones, M.J.: Robust Real-Time Face Detection. IJCV 57(2), 137–154 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Glocker, B., Feulner, J., Criminisi, A., Haynor, D.R., Konukoglu, E. (2012). Automatic Localization and Identification of Vertebrae in Arbitrary Field-of-View CT Scans. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012. MICCAI 2012. Lecture Notes in Computer Science, vol 7512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33454-2_73
Download citation
DOI: https://doi.org/10.1007/978-3-642-33454-2_73
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33453-5
Online ISBN: 978-3-642-33454-2
eBook Packages: Computer ScienceComputer Science (R0)