Dynamically-Driven Timed Automaton Abstractions for Proving Liveness of Continuous Systems | SpringerLink
Skip to main content

Dynamically-Driven Timed Automaton Abstractions for Proving Liveness of Continuous Systems

  • Conference paper
Formal Modeling and Analysis of Timed Systems (FORMATS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7595))

Abstract

We look at the problem of proving inevitability of continuous dynamical systems. An inevitability property says that a region of the state space will eventually be reached: this is a type of liveness property from the computer science viewpoint, and is related to attractivity of sets in dynamical systems. We consider a method of Maler and Batt to make an abstraction of a continuous dynamical system to a timed automaton, and show that a potentially infinite number of splits will be made if the splitting of the state space is made arbitrarily. To solve this problem, we define a method which creates a finite-sized timed automaton abstraction for a class of linear dynamical systems, and show that this timed abstraction proves inevitability.

This paper has been made under the framework of the EPSRC-funded project “DYVERSE: A New Kind of Control for Hybrid Systems” (EP/I001689/1). The second author is also grateful for the support of the RCUK (EP/E50048/1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5262
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 6578
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Batt, G., Belta, C., Weiss, R.: Model Checking Liveness Properties of Genetic Regulatory Networks. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 323–338. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Clarke, E.M., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O., Theobald, M.: Abstraction and Counterexample-Guided Refinement in Model Checking of Hybrid Systems. International Journal of Foundations of Computer Science 14(4), 583–604 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. D’Innocenzo, A., Julius, A.A., Di Benedetto, M.D., Pappas, G.J.: Approximate timed abstractions of hybrid automata. In: 46th IEEE Conference on Decision and Control, pp. 4045–4050 (2007)

    Google Scholar 

  5. Duggirala, P.S., Mitra, S.: Lyapunov Abstractions for Inevitability of Hybrid Systems. In: Hybrid Systems: Computation and Control (HSCC), pp. 115–123 (2012)

    Google Scholar 

  6. Heinrich, R., Neel, B.G., Rapoport, T.A.: Mathematical Models of Protein Kinase Signal Transduction. Molecular Cell 9(5), 957–970 (2002)

    Article  Google Scholar 

  7. Johansson, K.H., Egerstedt, M., Lygeros, J., Sastry, S.: On the regularization of Zeno hybrid automata. Systems & Control Letters 38(3), 141–150 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lyapunov, A.M.: The general problem of the stability of motion. PhD thesis, Moscow University (1892); Reprinted in English in the International Journal of Control 55(3) (1992)

    Google Scholar 

  9. Maler, O., Batt, G.: Approximating Continuous Systems by Timed Automata. In: Fisher, J. (ed.) FMSB 2008. LNCS (LNBI), vol. 5054, pp. 77–89. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Mitchell, I., Tomlin, C.J.: Level Set Methods for Computation in Hybrid Systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 310–323. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Olivero, A., Sifakis, J., Yovine, S.: Using Abstractions for the Verification of Linear Hybrid Systems. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 81–94. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  12. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th International Symposium on the Foundations of Computer Science, pp. 46–57 (1977)

    Google Scholar 

  13. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation-based abstraction refinement. ACM Transactions on Embedded Computing Systems 6(1), 573–589 (2007)

    Article  Google Scholar 

  14. Sloth, C., Wisniewski, R.: Verification of continuous dynamical systems by timed automata. Formal Methods in System Design 39(1), 47–82 (2011)

    Article  MATH  Google Scholar 

  15. Stursberg, O., Kowalewski, S., Engell, S.: On the Generation of Timed Discrete Approximations for Continuous Systems. Mathematical and Computer Modelling of Dynamical Systems: Methods, Tools and Applications in Engineering and Related Sciences 6(1), 51–70 (2000)

    MATH  Google Scholar 

  16. Tiwari, A.: Abstractions for hybrid systems. Formal Methods in System Design 32(1), 57–83 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carter, R., Navarro-López, E.M. (2012). Dynamically-Driven Timed Automaton Abstractions for Proving Liveness of Continuous Systems. In: Jurdziński, M., Ničković, D. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2012. Lecture Notes in Computer Science, vol 7595. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33365-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33365-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33364-4

  • Online ISBN: 978-3-642-33365-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics