Inconsistency Management for Traffic Regulations: Formalization and Complexity Results | SpringerLink
Skip to main content

Inconsistency Management for Traffic Regulations: Formalization and Complexity Results

  • Conference paper
Logics in Artificial Intelligence (JELIA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7519))

Included in the following conference series:

Abstract

Smart Cities is a vision driven by the availability of governmental data that fosters many challenging applications. One of them is the management of inconsistent traffic regulations, i.e., the handling of inconsistent traffic signs and measures in urban areas such as wrong sign posting, or errors in data acquisition in traffic sign administration software. We investigate such inconsistent traffic scenarios and formally model traffic regulations using a logic-based approach for traffic signs and measures, and logical theories describe emerging conflicts on a graph-based street model. Founded on this model, we consider major reasoning tasks including consistency testing, diagnosis, and repair, and we analyze their computational complexity for different logical representation formalisms. Our results provide a basis for an ongoing implementation of the approach.

Supported by PRISMA solutions EDV-Dienstleistungen GmbH, and the Austrian Science Fund (FWF) projects P20841 and P24090.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results for defeasible logic. ACM Trans. Comput. Logic 2(2), 255–287 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)

    Article  Google Scholar 

  3. Console, L., Torasso, P.: Automated diagnosis. Intelligenza Artificiale 3(1-2), 42–48 (2006)

    Google Scholar 

  4. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power of Logic Programming. ACM Comput. Surv. 33(3), 374–425 (2001)

    Article  Google Scholar 

  5. Eiter, T., Faber, W., Fink, M., Woltran, S.: Complexity Results for Answer Set Programming with Bounded Predicate Arities. Ann. Math. Artif. Intell. 51(2-4), 123–165 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eiter, T., Gottlob, G., Leone, N.: Abduction From Logic Programs: Semantics and Complexity. Theoretical Computer Science 189(1-2), 129–177 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order reasoning and external evaluations in answer set programming. In: IJCAI, pp. 90–96 (2005)

    Google Scholar 

  8. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.T.: Potassco: The Potsdam answer set solving collection. AI Commun. 24(2), 107–124 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases. Next Generat. Comput. 9(3-4), 365–386 (1991)

    Article  MATH  Google Scholar 

  10. de Kleer, J., Kurien, J.: Fundamentals of model-based diagnosis. In: IFAC Symposium SAFEPROCESS 2003, pp. 25–36. Elsevier (2003)

    Google Scholar 

  11. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV System for Knowledge Representation and Reasoning. ACM TOCL 7(3), 499–562 (2006)

    Article  MathSciNet  Google Scholar 

  12. Lucas, P.: Symbolic diagnosis and its formalisation. Knowl. Eng. Rev. 12, 109–146 (1997)

    Article  Google Scholar 

  13. Maher, M.J.: Propositional defeasible logic has linear complexity. Theory Pract. Log. Program. 1(6), 691–711 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)

    Google Scholar 

  15. Poole, D.: Normality and faults in logic-based diagnosis. In: IJCAI, pp. 1304–1310 (1989)

    Google Scholar 

  16. Poole, D.: Representing diagnosis knowledge. Ann. Math. Artif. Intell. 11, 33–50 (1994)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beck, H., Eiter, T., Krennwallner, T. (2012). Inconsistency Management for Traffic Regulations: Formalization and Complexity Results. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds) Logics in Artificial Intelligence. JELIA 2012. Lecture Notes in Computer Science(), vol 7519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33353-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33353-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33352-1

  • Online ISBN: 978-3-642-33353-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics