Jumping to Conclusions | SpringerLink
Skip to main content

Jumping to Conclusions

A Logico-Probabilistic Foundation for Defeasible Rule-Based Arguments

  • Conference paper
Logics in Artificial Intelligence (JELIA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7519))

Included in the following conference series:

Abstract

A theory of defeasible arguments is proposed that combines logical and probabilistic properties. This logico-probabilistic argumentation theory builds on two foundational theories of nonmonotonic reasoning and uncertainty: the study of nonmonotonic consequence relations (and the associated minimal model semantics) and probability theory. A key result is that, in the theory, qualitatively defined argument validity can be derived from a quantitative interpretation. The theory provides a synthetic perspective of arguments ‘jumping to conclusions’, rules with exceptions, and probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baroni, P., Caminada, M., Giacomin, M.: Review: an introduction to argumentation semantics. The Knowledge Engineering Review 26(4), 365–410 (2011)

    Article  Google Scholar 

  2. van Benthem, J.: Foundations of conditional logic. Journal of Philosophical Logic, 303–349 (1984)

    Google Scholar 

  3. Bex, F., Van Koppen, P., Prakken, H., Verheij, B.: A hybrid formal theory of arguments, stories and criminal evidence. Artificial Intelligence and Law, 1–30 (2010)

    Google Scholar 

  4. Dubois, D., Prade, H.: Possibility theory, probability theory and multiple-valued logics: A clarification. Annals of Mathematics and Artificial Intelligence 32(1), 35–66 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dung, P.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence 77, 321–357 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Geffner, H., Pearl, J.: Conditional entailment: Bridging two approaches to default reasoning. Artificial Intelligence 53(2-3), 209–244 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hájek, A.: Interpretations of probability. In: Zalta, E. (ed.) The Stanford Encyclopedia of Philosophy, Stanford University (2011)

    Google Scholar 

  8. Hawthorne, J., Makinson, D.: The quantitative/qualitative watershed for rules of uncertain inference. Studia Logica 86(2), 247–297 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jensen, F., Nielsen, T.: Bayesian networks and decision graphs. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  10. Josephson, J., Josephson, S.: Abductive Inference: Computation, Philosophy, Technology. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  11. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44, 167–207 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Makinson, D.: General patterns in nonmonotonic reasoning. In: Gabbay, D., Hogger, C., Robinson, J. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming. Nonmonotonic Reasoning and Uncertain Reasoning, vol. 3, pp. 35–110. Clarendon Press, Oxford (1994)

    Google Scholar 

  13. Pearl, J.: Causality. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  14. Pollock, J.: Cognitive Carpentry: A Blueprint for How to Build a Person. The MIT Press, Cambridge (1995)

    Google Scholar 

  15. Prakken, H.: An abstract framework for argumentation with structured arguments. Argument and Computation 1(2), 93–124 (2010)

    Article  Google Scholar 

  16. Rahwan, I., Simari, G. (eds.): Argumentation in Artificial Intelligence. Springer, Dordrecht (2009)

    Google Scholar 

  17. Verheij, B.: Two approaches to dialectical argumentation: admissible sets and argumentation stages. In: Meyer, J.J., van der Gaag, L. (eds.) Proceedings of NAIC 1996, pp. 357–368. Universiteit Utrecht, Utrecht (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Verheij, B. (2012). Jumping to Conclusions. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds) Logics in Artificial Intelligence. JELIA 2012. Lecture Notes in Computer Science(), vol 7519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33353-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33353-8_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33352-1

  • Online ISBN: 978-3-642-33353-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics