Minimal Proof Search for Modal Logic K Model Checking | SpringerLink
Skip to main content

Minimal Proof Search for Modal Logic K Model Checking

  • Conference paper
Logics in Artificial Intelligence (JELIA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7519))

Included in the following conference series:

  • 863 Accesses

Abstract

Most modal logics such as S5, LTL, or ATL are extensions of Modal Logic K. While the model checking problems for LTL and to a lesser extent ATL have been very active research areas for the past decades, the model checking problem for the more basic MMLK has important applications as a formal framework for perfect information multi-player games on its own.

We present MPS, an effort number based algorithm solving the model checking problem for MMLK. We prove two important properties for MPS beyond its correctness. The (dis)proof exhibited by MPS is of minimal cost for a general definition of cost, and MPS is an optimal algorithm for finding (dis)proofs of minimal cost. Optimality means that any comparable algorithm either needs to explore a bigger or equal state space than MPS, or is not guaranteed to find a (dis)proof of minimal cost on every input.

As such, our work relates to A* and AO* in heuristic search, to Proof Number Search and DFPN+ in two-player games, and to counterexample minimization in software model checking.

A longer version of this article is available at http://arxiv.org/abs/1207.1832v1 .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allis, L.V., van der Meulen, M., van den Herik, H.J.: Proof-Number Search. Artificial Intelligence 66(1), 91–124 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blackburn, P., De Rijke, M., Venema, Y.: Modal Logic, vol. 53. Cambridge University Press (2001)

    Google Scholar 

  3. Clarke, E.M., Grumberg, O., McMillan, K.L., Zhao, X.: Efficient generation of counterexamples and witnesses in symbolic model checking. In: Proceedings of the 32nd Annual ACM/IEEE Design Automation Conference, pp. 427–432. ACM (1995)

    Google Scholar 

  4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. The MIT Press (1999)

    Google Scholar 

  5. Clarke, E.M., Jha, S., Lu, Y., Veith, H.: Tree-like counterexamples in model checking. In: Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science, pp. 19–29. IEEE (2002)

    Google Scholar 

  6. Cleaveland, R.: Tableau-based model checking in the propositional mu-calculus. Acta Informatica 27(8), 725–747 (1989)

    MathSciNet  MATH  Google Scholar 

  7. Groce, A., Visser, W.: What went wrong: Explaining counterexamples. In: Model Checking Software, pp. 121–136 (2003)

    Google Scholar 

  8. Kishimoto, A., Müller, M.: A solution to the GHI problem for depth-first proof-number search. Information Sciences 175(4), 296–314 (2005)

    Article  Google Scholar 

  9. Korf, R.E.: Depth-first iterative-deepening: an optimal admissible tree search. Artificial Intelligence 27(1), 97–109 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lange, M.: Model checking propositional dynamic logic with all extras. Journal of Applied Logic 4(1), 39–49 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A Model Checker for the Verification of Multi-Agent Systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 682–688. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Müller, M.: Proof-Set Search. In: Schaeffer, J., Müller, M., Björnsson, Y. (eds.) CG 2002. LNCS, vol. 2883, pp. 88–107. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Nagai, A.: Df-pn algorithm for searching AND/OR trees and its applications. Ph.D. thesis, University of Tokyo (December 2001)

    Google Scholar 

  14. Pearl, J.: Heuristics: intelligent search strategies for computer problem solving. Addison Wesley Publishing Company (1984)

    Google Scholar 

  15. Schijf, M., Allis, L.V., Uiterwijk, J.W.: Proof-number search and transpositions. ICCA Journal 17(2), 63–74 (1994)

    Google Scholar 

  16. Shoham, Y., Leyton-Brown, K.: Multiagent systems: Algorithmic, game-theoretic, and logical foundations. Cambridge University Press (2009)

    Google Scholar 

  17. van der Hoek, W., Wooldridge, M.J.: Model checking knowledge and time. In: Bošnački, D., Leue, S. (eds.) SPIN 2002. LNCS, vol. 2318, pp. 95–111. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  18. van Ditmarsch, H.P., van der Hoek, W., Kooi, B.P.: Concurrent dynamic epistemic logic for MAS. In: Proceedings of the Second International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 201–208. ACM (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saffidine, A. (2012). Minimal Proof Search for Modal Logic K Model Checking. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds) Logics in Artificial Intelligence. JELIA 2012. Lecture Notes in Computer Science(), vol 7519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33353-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33353-8_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33352-1

  • Online ISBN: 978-3-642-33353-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics