A Framework for Semantic-Based Similarity Measures for $\mathcal{ELH}$ -Concepts | SpringerLink
Skip to main content

A Framework for Semantic-Based Similarity Measures for \(\mathcal{ELH}\)-Concepts

  • Conference paper
Logics in Artificial Intelligence (JELIA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7519))

Included in the following conference series:

Abstract

Similarity measures for concepts written in Description Logics (DLs) are often devised based on the syntax of concepts or simply by adjusting them to a set of instance data. These measures do not take the semantics of the concepts into account and can thus lead to unintuitive results. It even remains unclear how these measures behave if applied to new domains or new sets of instance data.

In this paper we develop a framework for similarity measures for \(\mathcal{ E\!L\!H}\)-concept descriptions based on the semantics of the DL \(\mathcal{ E\!L\!H}\). We show that our framework ensures that the measures resulting from instantiations fulfill fundamental properties , such as equivalence invariance, yet the framework provides the flexibility to adjust measures to specifics of the modelled domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press (2003)

    Google Scholar 

  2. Baader, F., Küsters, R., Molitor, R.: Computing least common subsumers in description logics with existential restrictions. In: Dean, T. (ed.) Proc. of the 16th Int. Joint Conf. on Artificial Intelligence (IJCAI 1999), Stockholm, Sweden, pp. 96–101. Morgan Kaufmann, Los Altos (1999)

    Google Scholar 

  3. Borgida, A., Walsh, T.J., Hirsh, H.: Towards measuring similarity in description logics. In: Proceedings of the International Workshop on Description Logics (DL 2005) (2005)

    Google Scholar 

  4. Bowdle, B., Gentner, D.: Informativity and asymmetry in comparisons. Cognitive Psychology 34(3), 244–286 (1997); PMID: 9466832

    Article  Google Scholar 

  5. T.G.O. Consortium. Gene Ontology: Tool for the unification of biology. Nature Genetics 25, 25–29 (2000)

    Google Scholar 

  6. d’Amato, C., Fanizzi, N., Esposito, F.: A semantic similarity measure for expressive description logics. In: Convegno Italiano di Logica Computazionale (CILC 2005) (2005)

    Google Scholar 

  7. d’Amato, C., Fanizzi, N., Esposito, F.: A dissimilarity measure for \(\mathcal{ALC}\) concept descriptions. In: Proceedings of the ACM Symposium on Applied Computing, SAC 2006, pp. 1695–1699 (2006)

    Google Scholar 

  8. d’Amato, C., Staab, S., Fanizzi, N.: On the Influence of Description Logics Ontologies on Conceptual Similarity. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 48–63. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Euzenat, J., Valtchev, P.: Similarity-based ontology alignment in OWL-lite. In: Proceedings of the 16th European Conference on Artificial Intelligence (ECAI 2004), pp. 333–337. IOS Press (2004)

    Google Scholar 

  10. Fanizzi, N., d’Amato, C.: A similarity measure for the \(\mathcal{ALN}\) description logic. In: Convegno Italiano di Logica Computazionale (CILC 2006) (2006)

    Google Scholar 

  11. Jaccard, P.: Étude comparative de la distribution florale dans une portion des alpes et des jura. Bulletin de la Societe Vaudoise des Sciences Naturelles 37, 547–579 (1901)

    Google Scholar 

  12. Janowicz, K.: SIM-DL: Towards a semantic similarity measurement theory for the description logic \(\mathcal{ALCNR}\) in geographic information retrieval. In: SeBGIS 2006, OTM Workshops 2006, pp. 1681–1692 (2006)

    Google Scholar 

  13. Janowicz, K., Wilkes, M.: SIM-DLA: a novel semantic similarity measure for description logics reducing Inter-Concept to Inter-Instance similarity. In: Proceedings of the 6th European Semantic Web Conference on The Semantic Web Research and Applications, pp. 353–367 (2009)

    Google Scholar 

  14. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. SV (2000)

    Google Scholar 

  15. Lehmann, K.: A framework for semantic invariant similarity measures for \(\mathcal{ELH}\) concept descriptions. Master’s thesis, TU Dresden (2012), http://lat.inf.tu-dresden.de/research/mas

  16. Li, M., Chen, X., Li, X., Ma, B., Vitányi, P.M.B.: The similarity metric. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 863–872 (2003)

    Google Scholar 

  17. Li, M., Sleep, M.R.: Melody classification using a similarity metric based on Kolmogorov complexity. In: Proceedings of the Sound and Music Computing Conference (SMC 2004) (2004)

    Google Scholar 

  18. Lin, D.: An Information-Theoretic definition of similarity. In: Proceedings of the Fifteenth International Conference on Machine Learning, pp. 296–304 (1998)

    Google Scholar 

  19. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 web ontology language profiles. W3C Recommendation (October 27, 2009), http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/

  20. Nikolova, N., Jaworska, J.: Approaches to measure chemical similarity - a review. QSAR & Combinatorial Science 22, 1006–1026 (2003)

    Article  Google Scholar 

  21. Spackman, K.: Managing clinical terminology hierarchies using algorithmic calculation of subsumption: Experience with snomed-rt. Journal of the American Medical Informatics Assoc. (2000), Fall Symposium Special Issue

    Google Scholar 

  22. Tversky, A.: Features of similarity. Psychological Review 84, 327–352 (1977)

    Article  Google Scholar 

  23. W3C OWL Working Group. OWL 2 web ontology language document overview. W3C Recommendation (October 27, 2009), http://www.w3.org/TR/2009/REC-owl2-overview-20091027/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lehmann, K., Turhan, AY. (2012). A Framework for Semantic-Based Similarity Measures for \(\mathcal{ELH}\)-Concepts. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds) Logics in Artificial Intelligence. JELIA 2012. Lecture Notes in Computer Science(), vol 7519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33353-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33353-8_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33352-1

  • Online ISBN: 978-3-642-33353-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics