Abstract
Similarity measures for concepts written in Description Logics (DLs) are often devised based on the syntax of concepts or simply by adjusting them to a set of instance data. These measures do not take the semantics of the concepts into account and can thus lead to unintuitive results. It even remains unclear how these measures behave if applied to new domains or new sets of instance data.
In this paper we develop a framework for similarity measures for \(\mathcal{ E\!L\!H}\)-concept descriptions based on the semantics of the DL \(\mathcal{ E\!L\!H}\). We show that our framework ensures that the measures resulting from instantiations fulfill fundamental properties , such as equivalence invariance, yet the framework provides the flexibility to adjust measures to specifics of the modelled domain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press (2003)
Baader, F., Küsters, R., Molitor, R.: Computing least common subsumers in description logics with existential restrictions. In: Dean, T. (ed.) Proc. of the 16th Int. Joint Conf. on Artificial Intelligence (IJCAI 1999), Stockholm, Sweden, pp. 96–101. Morgan Kaufmann, Los Altos (1999)
Borgida, A., Walsh, T.J., Hirsh, H.: Towards measuring similarity in description logics. In: Proceedings of the International Workshop on Description Logics (DL 2005) (2005)
Bowdle, B., Gentner, D.: Informativity and asymmetry in comparisons. Cognitive Psychology 34(3), 244–286 (1997); PMID: 9466832
T.G.O. Consortium. Gene Ontology: Tool for the unification of biology. Nature Genetics 25, 25–29 (2000)
d’Amato, C., Fanizzi, N., Esposito, F.: A semantic similarity measure for expressive description logics. In: Convegno Italiano di Logica Computazionale (CILC 2005) (2005)
d’Amato, C., Fanizzi, N., Esposito, F.: A dissimilarity measure for \(\mathcal{ALC}\) concept descriptions. In: Proceedings of the ACM Symposium on Applied Computing, SAC 2006, pp. 1695–1699 (2006)
d’Amato, C., Staab, S., Fanizzi, N.: On the Influence of Description Logics Ontologies on Conceptual Similarity. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 48–63. Springer, Heidelberg (2008)
Euzenat, J., Valtchev, P.: Similarity-based ontology alignment in OWL-lite. In: Proceedings of the 16th European Conference on Artificial Intelligence (ECAI 2004), pp. 333–337. IOS Press (2004)
Fanizzi, N., d’Amato, C.: A similarity measure for the \(\mathcal{ALN}\) description logic. In: Convegno Italiano di Logica Computazionale (CILC 2006) (2006)
Jaccard, P.: Étude comparative de la distribution florale dans une portion des alpes et des jura. Bulletin de la Societe Vaudoise des Sciences Naturelles 37, 547–579 (1901)
Janowicz, K.: SIM-DL: Towards a semantic similarity measurement theory for the description logic \(\mathcal{ALCNR}\) in geographic information retrieval. In: SeBGIS 2006, OTM Workshops 2006, pp. 1681–1692 (2006)
Janowicz, K., Wilkes, M.: SIM-DLA: a novel semantic similarity measure for description logics reducing Inter-Concept to Inter-Instance similarity. In: Proceedings of the 6th European Semantic Web Conference on The Semantic Web Research and Applications, pp. 353–367 (2009)
Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. SV (2000)
Lehmann, K.: A framework for semantic invariant similarity measures for \(\mathcal{ELH}\) concept descriptions. Master’s thesis, TU Dresden (2012), http://lat.inf.tu-dresden.de/research/mas
Li, M., Chen, X., Li, X., Ma, B., Vitányi, P.M.B.: The similarity metric. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 863–872 (2003)
Li, M., Sleep, M.R.: Melody classification using a similarity metric based on Kolmogorov complexity. In: Proceedings of the Sound and Music Computing Conference (SMC 2004) (2004)
Lin, D.: An Information-Theoretic definition of similarity. In: Proceedings of the Fifteenth International Conference on Machine Learning, pp. 296–304 (1998)
Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 web ontology language profiles. W3C Recommendation (October 27, 2009), http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/
Nikolova, N., Jaworska, J.: Approaches to measure chemical similarity - a review. QSAR & Combinatorial Science 22, 1006–1026 (2003)
Spackman, K.: Managing clinical terminology hierarchies using algorithmic calculation of subsumption: Experience with snomed-rt. Journal of the American Medical Informatics Assoc. (2000), Fall Symposium Special Issue
Tversky, A.: Features of similarity. Psychological Review 84, 327–352 (1977)
W3C OWL Working Group. OWL 2 web ontology language document overview. W3C Recommendation (October 27, 2009), http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lehmann, K., Turhan, AY. (2012). A Framework for Semantic-Based Similarity Measures for \(\mathcal{ELH}\)-Concepts. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds) Logics in Artificial Intelligence. JELIA 2012. Lecture Notes in Computer Science(), vol 7519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33353-8_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-33353-8_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33352-1
Online ISBN: 978-3-642-33353-8
eBook Packages: Computer ScienceComputer Science (R0)