Kinetic Modelling of Synaptic Functions in the Alpha Rhythm Neural Mass Model | SpringerLink
Skip to main content

Kinetic Modelling of Synaptic Functions in the Alpha Rhythm Neural Mass Model

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2012 (ICANN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7552))

Included in the following conference series:

Abstract

In this work, we introduce the kinetic framework for modelling synaptic transmission in an existing neural mass model of the thalamocortical circuitry to study Electroencephalogram (EEG) slowing within the alpha frequency band (8–13 Hz), a hallmark of Alzheimer’s disease (AD). Ligand-gated excitatory and inhibitory synapses mediated by AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and GABA A (gamma-amino-butyric acid) receptors respectively are modelled. Our results show that the concentration of the GABA neurotransmitter acts as a bifurcation parameter, causing the model to switch from a limit cycle mode to a steady state. Further, the retino-geniculate pathway connectivity plays a significant role in modulating the power within the alpha band, thus conforming to research proposing ocular biomarkers in AD. Overall, kinetic modelling of synaptic transmission in neural mass models has enabled a more detailed investigation into the neural correlates underlying abnormal EEG in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Soininen, H., Reinikainen, K., Partanen, J., Helkala, E.L., Palijarvi, L., Riekkinen, P.: Slowing of Electroencephalogram and Choline Acetyltransferase Activity in Post Mortem Frontal Cortex in Definite Alzheimer’s Disease. Neurosc. 49, 529–535 (1992)

    Article  Google Scholar 

  2. da Silva, F.H.L., Hoeks, A., Smits, H., Zetterberg, L.H.: Model of Brain Rhythmic Activity. Kybernetic 15, 23–37 (1974)

    Google Scholar 

  3. Sen Bhattacharya, B., Coyle, D., Maguire, L.P.: Thalamocortical Circuitry and Alpha Rhythm Slowing: an Empirical Study Based on a Classic Computational Model. In: IEEE Proceedings of the IJCNN, Barcelona, pp. 3912–3918 (2010)

    Google Scholar 

  4. Sen Bhattacharya, B., Coyle, D., Maguire, L.P.: Alpha and theta rhythm abnormality in Alzheimer’s Disease: a study using a computational model. In: Hernández, C., Gómez, J., Sanz, R., Alexander, I., Smith, L., Hussain, A., Chella, A. (eds.) Advances in Experimental Medicine and Biology: From Brains to Systems, vol. 718, pp. 57–73. Springer, New York (2011)

    Google Scholar 

  5. Basar, E., Guntekin, B.: A review of brain oscillations in cognitive disorders and the role of neurotransmitters. Br. Res. Rev. 1235, 172–193 (2008)

    Google Scholar 

  6. Rall, W.: Distinguishing Theoretical Synaptic Potentials Computed for Different Soma-Dendritic Distributions of Synaptic Inputs. J. Neurophysiol. 30, 1138–1168 (1967)

    Google Scholar 

  7. Bernard, C., Ge, Y.C., Stockley, E., Willis, J.B., Wheal, H.V.: Synaptic Integration of NMDA and Non-NMDA Receptors in Large Neuronal Network Models Solved by Means of Differential Equations. Biol. Cybern. 70, 267–273 (1994)

    Article  MATH  Google Scholar 

  8. Destexhe, A., Mainen, Z.F.: Synthesis of Models for Excitable Membranes, Synaptic Transmission and Neuromodulation Using A Common Formalism. J. Comp. Neurosc. 1, 195–230 (1994)

    Article  Google Scholar 

  9. Destexhe, A., Mainen, Z.F., Sejnowski, T.J.: An Efficient Method for Computing Synaptic Conductances Based on a Kinetic Model of Receptor Binding. Neural Comp. 6, 14–18 (1994)

    Article  Google Scholar 

  10. Suffczyński, P., Kalitzin, S., da Silva, F.H.L.: Dynamics of Non-convulsive Epileptic Phenomena Modelled by a Bistable Neuronal Network. Neurosc. 126, 467–484 (2004)

    Article  Google Scholar 

  11. Frost, S., Martins, R.N., Kanagasingam, Y.: Ocular biomarkers for early detection of Alzheimer’s Disease. J. Alzheimer’s Disease 22(1), 1–16 (2010)

    Google Scholar 

  12. Wang, X., Golomb, D., Rinzel, J.: Emergent Spindle Oscillations and Intermittent Burst Firing in a Thalamic model: Specific Neuronal Mechanisms. PNAS 92, 5577–5581 (1995)

    Article  Google Scholar 

  13. Golomb, D., Wang, X., Rinzel, J.: Propagation of Spindle Waves in a Thalamic Slice Model. J. Neurophysiol. 75, 750–769 (1996)

    Google Scholar 

  14. Sherman, S.M., Guillery, R.W.: Exploring the Thalamus and its Role in Cortical Functioning. Academic Press, New York (2006)

    Google Scholar 

  15. van Krosigk, M., Bal, T., McCormick, D.A.: Cellular Mechanisms of a Synchronized Oscillation in the Thalamus. Science 261, 361–364 (1993)

    Article  Google Scholar 

  16. Suffczyński, P.: Neural Dynamics Underlying Brain Thalamic Oscillations Investigated with Computational Models, Ph.D. Dissertation, Institute of Experimental Physics, University of Warsaw (2000)

    Google Scholar 

  17. Horn, S.C.V., Erisir, A., Sherman, S.M.: Relative Distribution of Synapses in the A-laminae of the Lateral Geniculate Nucleus of the Cat. J. Compar. Neurol. 416, 509–520 (2000)

    Article  Google Scholar 

  18. Sen Bhattacharya, B., Coyle, D., Maguire, L.P.: A Thalamo-Cortico-Thalamic Neural Mass Model To Study Alpha Rhythms in Alzheimer’s Disease. Neur. Netw. 24, 631–635 (2011)

    Article  Google Scholar 

  19. Satoh, J., Tabira, T., Sano, M., Nakayama, H., Tateishi, J.: Parvalbumin-immunoreactive Neurons in the Human Central Nervous System are Decreased in Alzheimer’s Disease. Acta Neuropathol. 81(4), 388–395 (1991)

    Article  Google Scholar 

  20. Braak, H., Braak, E.: Alzheimer’s Disease Affects Limbic Nuclei of the Thalamus. Acta Neuropathol. 81(3), 261–268 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bhattacharya, B.S., Coyle, D., Maguire, L.P., Stewart, J. (2012). Kinetic Modelling of Synaptic Functions in the Alpha Rhythm Neural Mass Model. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33269-2_81

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33269-2_81

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33268-5

  • Online ISBN: 978-3-642-33269-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics