Abstract
This paper presents a recurrent neural networks applied to handwriting character recognition. The method Multi-dimensional Recurrent Neural Network is evaluated against classical techniques. To improve the model performance we propose the use of specialized Support Vector Machine combined whit the original Multi-dimensional Recurrent Neural Network in cases of confusion letters. The experiments were performed in the C-Cube database and compared with different classifiers. The hierarchical combination presented promising results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
El Abed, H., Margner, V., Kherallah, M., Alimi, A.M.: ICDAR 2009 Handwriting Recognition Competition. In: Int. Conf. Document Analysis and Recognition, pp. 1388–1392 (2009)
Bellili, A., Gilloux, M., Gallinari, P.: An Hybrid MLP-SVM Handwritten Digit Recognizer. In: Int. Conf. on Document Analysis and Recognition, pp. 28–32 (2001)
Bunke, H.: Recognition of cursive roman handwriting - past present and future. In: Proc. 7th Int. Conf. on Document Analysis and Recognition, vol. 1, pp. 448–459 (2003)
Camastra, F.: A SVM-Based Cursive Character Recognizer. Pattern Recognition 40(12), 3721–3727 (2007)
Cruz, R.M.O., Cavalcanti, G.D.C., Tsang, I.R.: An Ensemble Classifier for Offline Cursive Character Recognition using Multiple Feature Extraction Techniques. In: IEEE Int. Joint Conf. on Neural Networks, pp. 744–751 (2010)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley and Sons (2001)
Graves, A., Fernández, S., Schmidhuber, J.: Multidimensional Recurrent Neural Networks. In: Proc. of Int. Con. on Artificial Neural Networks, pp. 549–558 (2007)
Graves, A.: Supervised Sequence Labelling with Recurrent Neural Networks. Dissertation, Technische Universität München, München (2008)
Graves, A., Schmidhuber, J.: Offline Handwriting Recognition with Multidimensional Recurrent Neural Networks. In: Adv. in Neural Information Proc. Syst., pp. 545–552 (2009)
Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural Computation 9(8), 1735–1780 (1997)
Neves, R.F.P., Lopes, A.N.G., Mello, C.A.B., Zanchettin, C.: A SVM Based Off-line Handwritten Digit Recognizer. In: IEEE Int. Conf. on Sys., Man, and Cyb., pp. 510–515 (2011)
Plamondon, R., Srihari, S.N.: On-line and Off-line Handwriting Recognition: A Comprehensive Survey. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 63–84 (2000)
Rodrigues, R.J., Kupac, G.V., Thomé, A.C.G.: Character Feature Extraction using Polygonal Projection Sweep (Contour Detection). In: Proc. Int. Work. Conf. on Artificial Neural Networks, pp. 687–695 (2001)
Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall Pearson Education Inc. (2003)
Tappert, C., Suen, C., Wakahara, T.: The State of the Art in Online Handwriting Recognition. IEEE Trans. on Patt. Analysis and Machine Intelligence 12(8), 787–808 (1990)
Thornton, J., Faichney, J., Blumenstein, M., Hine, T.: Character Recognition using Hierarchical Vector Quantization and Temporal Pooling. In: Proc. Australasian Joint Con. on Artificial Intelligence, pp. 562–572 (2008)
Thornton, T., Blumenstein, M., Nguyen, V., Hine, T.: Offline Cursive Character Recognition: A State-of-the-art Comparison. In: Conf. Int. Graphonomics Society (2009)
Trier, O.D., Jains, A.K., Taxt, T.: Feature Extraction Methods for Character Recognition - A Survey. Pattern Recognition 29(4), 641–662 (1996)
Vamvakas, G., Gatos, B., Perantonis, S.J.: Handwritten Character Recognition Through Two-stage Foreground Sub-sampling. Pattern Recognition (43), 2807–2816 (2010)
Vapnik, V.N.: Statistical Learning Theory. John Wiley and Sons, New York (1998)
Vinciarelli, A.: A Survey on Off-line Cursive Script Recognition. Pattern Recognition 35(7), 1433–1446 (2002)
Washington, W.A., Zanchettin, C.: A MLP-SVM Hybrid Model for Cursive Handwriting Recognition. In: Proc. of Int. Joint Conf. on Neural Networks, pp. 843–850 (2011)
Zanchettin, C., Bezerra, B.L.D., Azevedo, W.W.: A KNN-SVM Hybrid Model for Cursive Handwriting Recognition. In: IEEE Int. Joint Con. on Neural Networks, Birsbane (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bezerra, B.L.D., Zanchettin, C., de Andrade, V.B. (2012). A MDRNN-SVM Hybrid Model for Cursive Offline Handwriting Recognition. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7553. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33266-1_31
Download citation
DOI: https://doi.org/10.1007/978-3-642-33266-1_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33265-4
Online ISBN: 978-3-642-33266-1
eBook Packages: Computer ScienceComputer Science (R0)