Extracting Dynamic Urban Mobility Patterns from Mobile Phone Data | SpringerLink
Skip to main content

Extracting Dynamic Urban Mobility Patterns from Mobile Phone Data

  • Conference paper
Geographic Information Science (GIScience 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7478))

Included in the following conference series:

Abstract

The rapid development of information and communication technologies (ICTs) has provided rich resources for spatio-temporal data mining and knowledge discovery in modern societies. Previous research has focused on understanding aggregated urban mobility patterns based on mobile phone datasets, such as extracting activity hotspots and clusters. In this paper, we aim to go one step further from identifying aggregated mobility patterns. Using hourly time series we extract and represent the dynamic mobility patterns in different urban areas. A Dynamic Time Warping (DTW) algorithm is applied to measure the similarity between these time series, which also provides input for classifying different urban areas based on their mobility patterns. In addition, we investigate the outlier urban areas identified through abnormal mobility patterns. The results can be utilized by researchers and policy makers to understand the dynamic nature of different urban areas, as well as updating environmental and transportation policies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hägerstrand, T.: What About People in Regional Science? Papers of the Regional Science Association 24, 7–21 (1970)

    Article  Google Scholar 

  2. Batty, M.: Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals. MIT Press, Cambridge (2005)

    Google Scholar 

  3. Harvey, A.S., Taylor, M.E.: Activity Settings and Travel Behaviour: A Social Contact Perspective. Transportation 27, 53–73 (2000)

    Article  Google Scholar 

  4. Ratti, C., Sevtsuk, A., Huang, S., Pailer, R.: Mobile Landscapes: Graz in Real Time. In: The 3rd Symposium on LBS & TeleCartography, Vienna, Austria (2005)

    Google Scholar 

  5. Miller, H.: Geographic Data Mining and Knowledge Discovery: An Overview. In: Miller, H.J., Han, J. (eds.) Geographic Data Mining and Knowledge Discovery, 2nd edn., pp. 3–32. CRC Press, London (2009)

    Chapter  Google Scholar 

  6. Hamilton, B.W.: Wasteful Commuting. Journal of Political Economy 90, 1035–1053 (1982)

    Article  Google Scholar 

  7. Gordon, P., Kumar, A., Richardson, H.W.: The Influence of Metropolitan Spatial Structure on Commuting Time. Journal of Urban Economics 26, 138–151 (1989)

    Article  Google Scholar 

  8. Phithakkitnukoon, S., Horanont, T., Di Lorenzo, G., Shibasaki, R., Ratti, C.: Activity-Aware Map: Identifying Human Daily Activity Pattern Using Mobile Phone Data. In: Salah, A.A., Gevers, T., Sebe, N., Vinciarelli, A. (eds.) HBU 2010. LNCS, vol. 6219, pp. 14–25. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. da Costa Filho, A.C.B., de Brito Filho, J.P., de Araujo, R.E., Benevides, C.A.: Infrared-Based System for Vehicle Classification. In: 2009 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), pp. 537–540 (2009)

    Google Scholar 

  10. Larsen, J., Urry, J., Axhausen, K.W.: Mobilities, Networks, Geographies. Ashgate, Aldershot (2006)

    Google Scholar 

  11. Ahas, R., Mark, Ü.: Location Services - New Challenges for Planning and Public Administration? Futures 37, 547–561 (2005)

    Article  Google Scholar 

  12. Yuan, Y., Raubal, M., Liu, Y.: Correlating Mobile Phone Usage and Travel Behavior - a Case Study of Harbin, China. Computers, Environment and Urban Systems 36, 118–130 (2012)

    Article  Google Scholar 

  13. Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.L.: Understanding Individual Human Mobility Patterns. Nature 453, 779–782 (2008)

    Article  Google Scholar 

  14. Song, C.M., Qu, Z.H., Blumm, N., Barabasi, A.L.: Limits of Predictability in Human Mobility. Science 327, 1018–1021 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ahas, R., Aasa, A., Mark, U., Pae, T., Kull, A.: Seasonal Tourism Spaces in Estonia: Case Study with Mobile Positioning Data. Tourism Management 28, 898–910 (2007)

    Article  Google Scholar 

  16. Schwanen, T., Kwan, M.P.: The Internet, Mobile Phone and Space-Time Constraints. Geoforum 39, 1362–1377 (2008)

    Article  Google Scholar 

  17. Couclelis, H.: Pizza over the Internet: E-Commerce, the Fragmentation of Activity and the Tyranny of the Region. Entrepreneurship and Regional Development 16, 41–54 (2004)

    Article  Google Scholar 

  18. Kang, C., Ma, X., Tong, D., Liu, Y.: Intra-Urban Human Mobility Patterns: An Urban Morphology Perspective. Physica A: Statistical Mechanics and its Applications 391, 1702–1717 (2012)

    Article  Google Scholar 

  19. Senin, P.: Dynamic Time Warping Algorithm Review. University of Hawaii at Manoa (2008)

    Google Scholar 

  20. Gunopulos, D., Das, G.: Time Series Similarity Measures and Time Series Indexing. Sigmod Record 30, 624–624 (2001)

    Article  Google Scholar 

  21. Eiter, T., Mannila, H.: Computing Discrete Fréchet Distance. Christian Doppler Laboratory for Expert Systems (1994)

    Google Scholar 

  22. Ahn, H.-K., Knauer, C., Scherfenberg, M., Schlipf, L., Vigneron, A.: Computing the Discrete Fréchet Distance with Imprecise Input. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part II. LNCS, vol. 6507, pp. 422–433. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Sakoe, H., Chiba, S.: Dynamic-Programming Algorithm Optimization for Spoken Word Recognition. IEEE Transactions on Acoustics Speech and Signal Processing 26, 43–49 (1978)

    Article  MATH  Google Scholar 

  24. Brown, M.K., Rabiner, L.R.: Dynamic Time Warping for Isolated Word Recognition Based on Ordered Graph Searching Techniques. In: International Conference on Acoustics, Speech, and Signal Processing, pp. 1255–1258 (1982)

    Google Scholar 

  25. Lee, J.-G., Han, J., Li, X., Gonzalez, H.: Traclass: Trajectory Classification Using Hierarchical Region-Based and Trajectory-Based Clustering. In: International Conference on Very Large Data Base (VLDB 2008), Auckland, New Zealand (2008)

    Google Scholar 

  26. Brown, J.C., Hodgins-Davis, A., Miller, P.J.O.: Classification of Vocalizations of Killer Whales Using Dynamic Time Warping. Journal of the Acoustical Society of America 119, El34–El40 (2006)

    Google Scholar 

  27. Krauß, T., Reinartz, P., Lehner, M., Schroeder, M., Stilla, U.: Dem Generation from Very High Resolution Stereo Satellite Data in Urban Areas Using Dynamic Programming. In: International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences, vol. 36. Hannover (2005)

    Google Scholar 

  28. Nguyen, K.A., Zhang, H., Stewart, R.A.: Application of Dynamic Time Warping Algorithm in Prototype Selection for the Disaggregation of Domestic Water Flow Data into End Use Events. In: 34th IAHR World Congress, Brisbane, Australia, pp. 2137–2144 (2011)

    Google Scholar 

  29. Zhu, T., Wang, J., Lv, W.: Outlier Mining Based Automatic Incident Detection on Urban Arterial Road. In: The 6th International Conference on Mobile Technology, Application & Systems (Mobility 2009). ACM, Nice (2009)

    Google Scholar 

  30. Mardia, K.V., Kent, J.T., Bibby, J.M.: Multivariate Analysis. Academic Press, London (1979)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yuan, Y., Raubal, M. (2012). Extracting Dynamic Urban Mobility Patterns from Mobile Phone Data. In: Xiao, N., Kwan, MP., Goodchild, M.F., Shekhar, S. (eds) Geographic Information Science. GIScience 2012. Lecture Notes in Computer Science, vol 7478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33024-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33024-7_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33023-0

  • Online ISBN: 978-3-642-33024-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics