Abstract
In this paper a new method for dynamic parameter adaptation in particle swarm optimization (PSO) is proposed. PSO is a metaheuristic inspired in social behaviors, which is very useful in optimization problems. In this paper we propose an improvement to the convergence and diversity of the swarm in PSO using fuzzy logic. Simulation results show that the proposed approach improves the performance of PSO.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abdelbar Ashraf, M., Abdelshahid, S., Wunsch, D.C.: Fuzzy PSO: A Generalization of Particle Swarm Optimization. In: Proceedings 2005 IEEE International Joint Conference on Neural Networks, vol. 2, pp. 1086–1091 (2005)
Juana, A.S.: Optimización por nube de partículas (PSO) de controladores difusos para robots autónomos móviles. Master’s thesis at Tijuana Institute of Technology (2011)
Engelbrecht Andries, P.: Fundamentals of Computational Swarm Intelligence. University of Pretoria, South Africa (2005)
Haupt Randy, L., Ellen, H.S.: Practical Genetic Algorithms, 2nd edn. A Wiley-Interscience publication, New York (2004)
Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice-Hall, Upper Saddle River (1997)
Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)
Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. IEEE Int. Conf. on Neural Networks, IV, pp. 1942–1948. IEEE Service Center, Piscataway (1995)
Molga, M., Smutnicki, C.: Test functions for optimization needs (2005)
Zadeh, L.: Fuzzy sets. Information & Control 8, 338–353 (1965)
Valdez, F., Melin, P., Castillo, O.: An improved evolutionary method with fuzzy logic for combining Particle Swarm Optimization and Genetic Algorithms. Appl. Soft Comput. 11(2), 2625–2632 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Olivas, F., Castillo, O. (2013). Particle Swarm Optimization with Dynamic Parameter Adaptation Using Fuzzy Logic for Benchmark Mathematical Functions. In: Castillo, O., Melin, P., Kacprzyk, J. (eds) Recent Advances on Hybrid Intelligent Systems. Studies in Computational Intelligence, vol 451. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33021-6_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-33021-6_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33020-9
Online ISBN: 978-3-642-33021-6
eBook Packages: EngineeringEngineering (R0)