Abstract
The quality of the cases maintained in a case base has a direct influence on the quality of the proposed solutions. The presence of cases that do not conform to the similarity hypothesis decreases the alignment of the case base and often degrades the performance of a CBR system. It is therefore important to find out the suitability of each case for the application of CBR and associate a solution with a certain degree of confidence. Feature weighting is another important aspect that determines the success of a system, as the presence of irrelevant and redundant attributes also results in incorrect solutions. We explore these problems in conjunction with a real-world CBR application called InfoChrom. It is used to predict the values of several soil nutrients based on features extracted from a chromatogram image of a soil sample. We propose novel feature weighting techniques based on alignment, as well as a new alignment and confidence measure as potential solutions. The hypotheses are evaluated on UCI datasets and the case base of Infochrom and show promising results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Khemani, D., Joseph, M.M., Variganti, S.: Case Based Interpretation of Soil Chromatograms. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS (LNAI), vol. 5239, pp. 587–599. Springer, Heidelberg (2008)
Chakraborti, S., Cerviño Beresi, U., Wiratunga, N., Massie, S., Lothian, R., Khemani, D.: Visualizing and Evaluating Complexity of Textual Case Bases. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS (LNAI), vol. 5239, pp. 104–119. Springer, Heidelberg (2008)
Massie, S., Wiratunga, N., Craw, S., Donati, A., Vicari, E.: From Anomaly Reports to Cases. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 359–373. Springer, Heidelberg (2007)
Fayyad, U.M., Irani, K.B.: Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning. In: Proceedings of the 13th International Joint Conference on Artificial Intelligence, Chambery, France, pp. 1022–1029. Morgan Kaufmann Publishers Inc. (1993)
Cheetham, W.: Case-Based Reasoning with Confidence. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS (LNAI), vol. 1898, pp. 15–25. Springer, Heidelberg (2000)
Cheetham, W., Price, J.: Measures of Solution Accuracy in Case-Based Reasoning Systems. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 106–118. Springer, Heidelberg (2004)
Wettschereck, D., Aha, D.W., Mohri, T.: A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artif. Intell. Rev. 11(1-5), 273–314 (1997)
Kelly, J.D., Davis, L.: A hybrid genetic algorithm for classification. In: Proceedings of the 12th International Joint Conference on Artificial Intelligence, IJCAI 1991, vol. 2, pp. 645–650. Morgan Kaufmann Publishers Inc., San Francisco (1991)
Aha, D.W.: Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms. Int. J. Man-Mach. Stud. 36(2), 267–287 (1992)
Wettschereck, D.: A study of distance-based machine learning algorithms. Ph.D. dissertation, Department of Computer Science, Oregon State University (1994)
Wettschereck, D., Aha, D.W.: Weighting Features. In: Aamodt, A., Veloso, M.M. (eds.) ICCBR 1995. LNCS, vol. 1010, pp. 347–358. Springer, Heidelberg (1995)
Massie, S., Craw, S., Wiratunga, N.: Complexity Profiling for Informed Case-Base Editing. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 325–339. Springer, Heidelberg (2006)
Lamontagne, L.: Textual cbr authoring using case cohesion. In: Proceedings of 3rd Textual Case-Based Reasoning Workshop at the 8th European Conf. on CBR (2006)
Raghunandan, M.A., Chakraborti, S., Khemani, D.: Robust Measures of Complexity in TCBR. In: McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS, vol. 5650, pp. 270–284. Springer, Heidelberg (2009)
Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science (New York, N.Y.) 290(5500), 2319–2323 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kar, D., Chakraborti, S., Ravindran, B. (2012). Feature Weighting and Confidence Based Prediction for Case Based Reasoning Systems. In: Agudo, B.D., Watson, I. (eds) Case-Based Reasoning Research and Development. ICCBR 2012. Lecture Notes in Computer Science(), vol 7466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32986-9_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-32986-9_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32985-2
Online ISBN: 978-3-642-32986-9
eBook Packages: Computer ScienceComputer Science (R0)