Flower Pollination Algorithm for Global Optimization | SpringerLink
Skip to main content

Flower Pollination Algorithm for Global Optimization

  • Conference paper
Unconventional Computation and Natural Computation (UCNC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7445))

Abstract

Flower pollination is an intriguing process in the natural world. Its evolutionary characteristics can be used to design new optimization algorithms. In this paper, we propose a new algorithm, namely, flower pollination algorithm, inspired by the pollination process of flowers. We first use ten test functions to validate the new algorithm, and compare its performance with genetic algorithms and particle swarm optimization. Our simulation results show the flower algorithm is more efficient than both GA and PSO. We also use the flower algorithm to solve a nonlinear design benchmark, which shows the convergence rate is almost exponential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5262
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 6578
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ackley, D.H.: A Connectionist Machine for Genetic Hillclimbing. Kluwer Academic Publishers (1987)

    Google Scholar 

  2. Cagnina, L.C., Esquivel, S.C., Coello, C.A.: Solving engineering optimization problems with the simple constrained particle swarm optimizer. Informatica 32, 319–326 (2008)

    MATH  Google Scholar 

  3. Chittka, L., Thomson, J.D., Waser, N.M.: Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 86, 361–377 (1999)

    Article  Google Scholar 

  4. Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gumus, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., Scheiger, C.A.: Handbook of Test Problems in Local and Global Optimization. Springer (1999)

    Google Scholar 

  5. Hedar, A.: Test function web pages, http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page364.htm

  6. Gandomi, A.H., Yang, X.S., Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Engineering with Computers 27, article (2011), doi:10.1007/s00366-011-0241-y

    Google Scholar 

  7. Glover, B.J.: Understanding Flowers and Flowering: An Integrated Approach. Oxford University Press (2007)

    Google Scholar 

  8. Goldberg, D.E.: Genetic Algorithms in Search, Optimisation and Machine Learning. Addison Wesley, Reading (1989)

    Google Scholar 

  9. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Anbor (1975)

    Google Scholar 

  10. Kazemian, M., Ramezani, Y., Lucas, C., Moshiri, B.: Swarm Clustering Based on Flowers Pollination by Artificial Bees. In: Abraham, A., Grosan, C., Ramos, V. (eds.) Swarm Intelligence in Data Mining. SCI, vol. 34, pp. 191–202. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. of IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)

    Google Scholar 

  12. Kennedy, J., Eberhart, R., Shi, Y.: Swarm intelligence. Academic Press (2001)

    Google Scholar 

  13. Pavlyukevich, I.: Lévy flights, non-local search and simulated annealing. J. Computational Physics 226, 1830–1844 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wikipedia article on pollination, http://en.wikipedia.org/wiki/Pollination

  15. Reynolds, A.M., Frye, M.A.: Free-flight odor tracking in Drosophila is consistent with an optimal intermittent scale-free search. PLoS One 2, e354 (2007)

    Google Scholar 

  16. Walker, M.: How flowers conquered the world. BBC Earth News (July 10, 2009), http://news.bbc.co.uk/earth/hi/earth_news/newsid_8143000/8143095.stm

  17. Waser, N.M.: Flower constancy: definition, cause and measurement. The American Naturalist 127(5), 596–603 (1986)

    Article  Google Scholar 

  18. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2008)

    Google Scholar 

  19. Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Computation 2(2), 78–84 (2010)

    Article  Google Scholar 

  20. Yang, X.S.: Engineering Optimization: An Introduction with Metaheuristic Applications. Wiley (2010)

    Google Scholar 

  21. Yang, X.-S.: A New Metaheuristic Bat-Inspired Algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO 2010. SCI, vol. 284, pp. 65–74. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Oily Fossils provide clues to the evolution of flowers. Science Daily (April 5, 2001), http://www.sciencedaily.com/releases/2001/04/010403071438.htm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, XS. (2012). Flower Pollination Algorithm for Global Optimization. In: Durand-Lose, J., Jonoska, N. (eds) Unconventional Computation and Natural Computation. UCNC 2012. Lecture Notes in Computer Science, vol 7445. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32894-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32894-7_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32893-0

  • Online ISBN: 978-3-642-32894-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics