Introducing Novelty Search in Evolutionary Swarm Robotics | SpringerLink
Skip to main content

Introducing Novelty Search in Evolutionary Swarm Robotics

  • Conference paper
Swarm Intelligence (ANTS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7461))

Included in the following conference series:

Abstract

Novelty search is a recent and promising evolutionary technique. The main idea behind it is to reward novel solutions instead of progress towards a fixed goal, in order to avoid premature convergence and deception. In this paper, we use novelty search together with NEAT, to evolve neuro-controllers for a swarm of simulated robots that should perform an aggregation task. In the past, novelty search has been applied to single robot systems. We demonstrate that novelty search can be applied successfully to multirobot systems, and we discuss the challenges introduced when moving from a single robot setup to a multirobot setup. Our results show that novelty search can outperform the fitness-based evolution in swarm robotic systems, finding (i) a more diverse set of successful solutions to an aggregation task, (ii) solutions with higher fitness scores earlier in the evolutionary runs, and (iii) simpler solutions in terms of the topological complexity of the evolved neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bahgeçi̇, E., Şahi̇n, E.: Evolving aggregation behaviors for swarm robotic systems: A systematic case study. In: Swarm Intelligence Symposium, pp. 333–340. IEEE, New York (2005)

    Google Scholar 

  2. Baldassarre, G., Nolfi, S., Parisi, D.: Evolving mobile robots able to display collective behaviors. Artificial Life 9(3), 255–268 (2003)

    Article  Google Scholar 

  3. Cuccu, G., Gomez, F.: When Novelty Is Not Enough. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcázar, A.I., Merelo, J.J., Neri, F., Preuss, M., Richter, H., Togelius, J., Yannakakis, G.N. (eds.) EvoApplications 2011, Part I. LNCS, vol. 6624, pp. 234–243. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Goldberg, D.E.: Simple genetic algorithms and the minimal, deceptive problem. In: Genetic Algorithms and Simulated Annealing. Research Notes in Artificial Intelligence, pp. 74–88. Pitman Publishing, London (1987)

    Google Scholar 

  5. Harvey, I., Husbands, P., Cliff, D., et al.: Issues in evolutionary robotics. In: Second Int. Conf. on Simulation of Adaptive Behavior, pp. 364–373. MIT Press, Cambridge (1993)

    Google Scholar 

  6. Heaton, J.: Programming Neural Networks with Encog3 in Java. Heaton Research, Chesterfield (2011)

    Google Scholar 

  7. Hugues, L., Bredeche, N.: Simbad: An Autonomous Robot Simulation Package for Education and Research. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 831–842. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Kohonen, T.: The self-organizing map. Proc. of the IEEE 78(9), 1464–1480 (1990)

    Article  Google Scholar 

  9. Lehman, J., Stanley, K.O.: Revising the evolutionary computation abstraction: minimal criteria novelty search. In: Genetic and Evolutionary Computation Conf., pp. 103–110. ACM, New York (2010)

    Google Scholar 

  10. Lehman, J., Stanley, K.O.: Abandoning objectives: Evolution through the search for novelty alone. Evolutionary Computation 19(2), 189–223 (2011)

    Article  Google Scholar 

  11. Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through novelty search and local competition. In: Genetic and Evolutionary Computation Conf., pp. 211–218. ACM, New York (2011)

    Google Scholar 

  12. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J.C., Floreano, D., Martinoli, A.: The e-puck, a robot designed for education in engineering. In: 9th Conf. on Autonomous Robot Systems and Competitions, pp. 59–65. IPCB, Castelo Branco (2009)

    Google Scholar 

  13. Mouret, J.: Novelty-based multiobjectivization. New Horizons in Evolutionary Robotics, pp. 139–154. Springer, Berlin (2011)

    Google Scholar 

  14. Risi, S., Vanderbleek, S.D., Hughes, C.E., Stanley, K.O.: How novelty search escapes the deceptive trap of learning to learn. In: Genetic and Evolutionary Computation Conf., pp. 153–160. ACM, New York (2009)

    Google Scholar 

  15. Soysal, O., Bahgeçi̇, E., Şahi̇n, E.: Aggregation in swarm robotic systems: Evolution and probabilistic control. Turkish Journal of Electrical Eng. 15(2), 199–225 (2007)

    Google Scholar 

  16. Stanley, K.O.: Efficient Evolution of Neural Networks Through Complexification. Ph.D. thesis, Dep. of Computer Sciences, The University of Texas, Austin (2004)

    Google Scholar 

  17. Stanley, K.O., Miikkulainen, R.: Evolving neural network through augmenting topologies. Evolutionary Computation 10(2), 99–127 (2002)

    Article  Google Scholar 

  18. Trianni, V., Groß, R., Labella, T.H., Şahin, E., Dorigo, M.: Evolving Aggregation Behaviors in a Swarm of Robots. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 865–874. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Whitley, L.D.: Fundamental principles of deception in genetic search. In: Foundations of Genetic Algorithms, pp. 221–241. Morgan Kaufmann, San Mateo (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gomes, J., Urbano, P., Christensen, A.L. (2012). Introducing Novelty Search in Evolutionary Swarm Robotics. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2012. Lecture Notes in Computer Science, vol 7461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32650-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32650-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32649-3

  • Online ISBN: 978-3-642-32650-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics